期末运筹学复习指南--本科--掌握这些必过!!!---持续更新

第二章:

标准型:

  • 目标函数是max型,如果是min型,两端乘负号变成max型。
  • 首先如果约束条件是小于等于,则直接左端加上松弛变量即可,目标函数中的系数为0。
  • 如果存在大于等于,就减去一个松弛变量。
  • 如果存在等于,不动就行了。

单纯形法:

  • 基于标准型的基础上,找出基变量,写到表上XB的位置上,CB对应目标函数系数,b是约束条件右端项。
  • 因为已经化为了标准型,所以我们只需检查检验数是否均小于0,不符合条件进行迭代即可。直至检验数均小于0。看表中b的位置,也就是最优解的x取值,带入目标函数即可。

人工变量法:

  • 因为约束条件不简单,可能有大于、小于或者等于,所以我们为了对付他也就有了人工变量法。
  • 对于小于等于的约束,我们左端可以加上一个松弛变量,而这个松弛变量也可以作为基变量的一部分。
  • 对于大于等于的,我们需要减去一个松弛变量,所以这个松弛变量是不能作为基变量的(基变量是单位阵),因此我们需要加上一个人工变量,作为基变量的一部分出现。
  • 对于等于的,我们不需要松弛变量,又因为原决策变量不可以作为基变量,所以我们在左端还是加上一个人工变量,并作为基变量的一部分。
  • 至此,基变量就找好了,我们进行运算,有大M法和两阶段法。

大M法:

  • 个人认为,叫大M法是因为我们将加入的人工变量的在目标函数的系数写为了-M,没错,是-M,因为我们这里是标准型。我个人认为化标准型之后最简单,不用区分是min还是max。
  • 按照单纯形法的步骤计算,只需注意M表示无穷大,到最后检验数均小于零就求出了最优解。

两阶段法:

  • 跟大M不同的是,我们先把目标函数中决策变量的系数均改成0,人工变量的系数变为-1,再做表。也可以看做是用一个新的目标函数,只含有人工变量而已,系数还是-1.
  • 第一阶段,我们这里用我们新的目标函数做表。至检验数小于等于0。带入求值,检查此时的心目标函数结果是否为0,不为零表示不满足条件,不需要进行第二阶段了。(因为等于零表示我们求出来的x取值是原问题的基可行解)
  • 第二阶段,还原目标函数,去掉人工变量。将第一阶段求得最后的表的左半部分,也就是CB、XB、b这三列,照搬过来。按照单纯形法的步骤继续计算书,至检验数均小于等于零。得最终决策变量x取值,带入目标函数。

第三章:

对偶模型:

已知LP转化为DP步骤如下:

  • 首先需要先判断是由max->min类型还是min->max类型,这两类题是相反的。
  • 我们先假设是由min->max类型。
  • 根据LP问题的约束条件个数设出DP问题的决策变量个数,DP的决策变量乘以LP约束的右端项(也就是b)就构成了DP的目标函数。
  • 接下来我们写DP的约束条件,最简单的方式就是DP的决策变量对应乘以LP约束中LP决策变量的系数,注意要对应好。比如,DP的决策变量是y,LP是x。那DP的第一个约束左端项就是DP的y对应乘以LP第一列的系数,因为DP的y数量是等于LP的约束数量的。第二个,第三个依次类推。这里我建议我们在写LP时,决策变量按列写好,第一列都是x1,第二列都是x2.。。。这样你在写对偶问题时只需要对应好列就好。
  • 接下来重头戏就是DP的约束符号了,也就体现出了两种类型的区别。因为我们这里是min->max,所以DP的约束符号要看LP给的决策变量符号,并且相反!!!!如:LP的x1>=0,那DP的第一个约束符号就是<=。或是<=到>=,再或是无约束到=,就这三种。
  • 接下来写DP约束的右端项,很简单,按照顺序把LP的目标函数系数对应抄过来就行,第一个系数对应第一个右端项。
  • 接下来就是DP的决策变量符号了,也体现出了类型的区别,我们这里是min->max,所以DP的变量符号是和LP的约束符号一致的,抄过来就行。记得约束是等于对应的是无约束即可。
  • 总结:写对偶模型最重要的就是区分是哪种类型,类型定好了就不会出错了。我们上面写的是min->max,(DP的约束看LP的变量,并且相反。DP的变量看LP的约束,并且相同)那么你max->min的就反过来就好(DP的约束看LP的变量,并且相同。DP的变量看LP的约束,并且相反)

对偶模型理论:

记住这几个就够用:

  • 对称性(弱对偶性):若都有可行解,那么LP的目标值小于等于DP的目标值。
  • 最优性:LP的目标值等于DP的目标值时,求出来的解就是最优解。
  • 无界性:LP是无界解–>DP无可行解,是单向的,反过来不成立。
  • 对偶定理(强对偶性):若LP存在最优解,则DP也存在最优解,且目标值相等。

对偶单纯形法:

首先我们需要搞明白什么是对偶单纯形法,我个人的理解就是就是正常的单纯形法求解,最后得出对偶问题最优解的单纯形法。在这之前我们需要知道,LP的松弛变量和DP的非基变量是对应的,同理DP的松弛变量也对应着LP的非基变量。

  • 还是化标准型,求解那一套,只不过要你求对偶单纯形法的题上来检验数就满足要求了。如果检验数不满足要求说明我们这就不能用对偶单纯形法,还是得用人工变量法。我们这里说的是检验数满足条件了,但是b却还存在负的,不满足可行解条件。需要将基变量换出来,这时候就涉及到谁出基谁入基。我们先从b那一列找出最小的,也就是最负的那个,确定了这一行。然后再用检验数对应去除以这一行,得出来数谁是最小正数,谁就入基。
  • 然后就是一系列操作,最后检验数满足条件了,b也满足条件了。
  • b的取值就是原问题的最优取值,那么对偶问题最优是怎么取值呢?我们看表的最后一部分,松弛变量的检验数的相反数也就是我们对偶问题的最优解取值。

灵敏度分析:

暂时略过吧,目前只会用Lingo灵敏度分析。

第四章:

运输平衡的表上作业法:

其实就是单纯形法的变形,倒来倒去都是在表上进行运算。步骤归纳为:

  • 找初始可行基解。即在m*n的表上按一定规则(最小元素法、伏格尔法),找出m+n-个数字格,也就是初始确定的基变量的取值。那空格也就是非基变量了。
  • 求检验数(闭回路法、位势法),当所有检验数均大于等于零时表明当前的基变量取值是最优的。也就不用下一步了。
  • 调整基变量取值(闭回路法),使其成为最优的。再求检验数检测一下是不是最优的,如果不是就重复调整至最优。

找初始基可行解:

  • 我喜欢用最小元素法,因为简单。步骤如下:
  • 表格里别的啥都不用写,就写出运费来,找出最小的。先满足这个最便宜的,很容易理解,能不用贵的就不用贵的。根据需求量找对应的产量,求出差值,划去已经满足的行或者列。直至全部分配完,最后肯定是正好分完,因为是平衡的运输问题。至此我们就找到了初始基可行解,也就是数字格,空格就是非基变量。

求检验数:

  • 我喜欢用位势法,也是因为简单。
  • 我们先添加一列Ui和一行Vj,随便找一个令初值为零,一般都选左下角或者右上角。
  • 遵循公式Ui+Vj=Cij,也就对着一次求出了每个Ui和Vj的取值了。注意!!我们这里处理的是基变量,也就是数字格。
  • 遵循公式西格玛ij=Cij-(Ui+Vj),求出非基变量的检验数,也就是空格处。注意!!这里处理的是非基变量,不要搞混了,Cij用的是非基变量的。
  • 至此我们就求出了检验数。

闭回路法调整取值:

  • 假设我们刚才求出的检验数表中有负的,证明还可以再优化。我们一个个来,先找一个负的,他这肯定是空格,以这里为起点,找闭回路。至于这个方向,怎么走基变量都是减,没影响。闭回路找完了,按正负交叉来调整运输量,也就是偶数点为整,奇数点为负。注意!!!至于调整量是多少,我们要从基变量的取值中找一个最小的,而不是固定取一。
  • 这样我们就把其中一个基变量的取值完美的移植到了非基变量上,使其成为基变量。
  • 这时我们再来算一遍检验数。
  • 对应运输量乘以对应单价就是最后的结果。

第五章:

线性目标规划建立:

  • 与之前不同的是我们在建立模型的时候要建立成最小的目标。
  • 利用好偏差变量,并且在写每个约束条件的单独目标时要弄明白到底是求哪个偏差变量的最小。
  • 加上权重,将每个目标加权加起来求最小。

线性目标规划求解:

  • 还是单纯形法,只不过这里检验数是检验数矩阵。
  • 在写检验数矩阵的时候,我们要看清是不是基变量,如果没有基变量就偏差变量对应的位置写1,剩下的是0即可,如果有基变量,就代换出来在表示。
  • 然后检查每一列的第一个非零元,如果为负,就证明不是满意解,注意这里没有最优解,统称为满意解。
  • 如果有多个负数,我们就找最小的那一列,然后根据表求出西格玛,看看换成哪个单位变量,谁换入谁换出。
  • 再写检验数矩阵,存在基变量的直接写相反数就行。直到检验数矩阵每列第一个非零元都是正数即可。

第六章:

  • 7
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值