ST-GSP: Spatial-Temporal Global Semantic Representation Learning for Urban Flow Prediction阅读笔记
文章目录
摘要
城市流量预测在公共交通管理和智能城市建设中发挥着至关重要的作用。以往的研究存在以下缺点:
(1)一般的模型没有考虑时间轴的相对位置信息,导致流量图的位置特征不能被学习到;
(2)常常忽略不同尺度的时间依赖关系,导致不准确的全局信息表示;
(3)这些模型仅仅预测最后时间序列的流图而不是更多的流图,从而忽略了学习过程中的部分时间特征。
于是本文提出方法解决这些缺点,提出一个新的模型ST-GSP。
对于(1),作者设计了一个语义流编码器,用于提取时间上的相关位置信息。此外,这个编码器还能捕获每个时间间隔内城市流图的空间依赖和外部影响因素。
对于(2),作者通过采用多头自注意力机制,建模不同尺度下的时间依赖性之间的相关性,同时学习到全局的时间依赖性。
对于(3),文中将一个时间序列上的城市流图给掩蔽住,然后预测训练出一个深度双向预训练模型,捕获上下文的表示。
最后在北京和纽约城市流量进行实验,验证所提方法优于最先进的方法。
`
一、方法
在时间依赖上通常会分为三个尺