提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
为什么要平稳?
无非就是希望能根据平稳的数据更好更准确的预测未来。非平稳性的时间序列数据太过于杂乱无章,有的甚至完全无规律可循,但是平稳时间序列本身存在某种分布规律,前后具有一定自相关性且能够延续下去,进而可以利用这些信息帮助预测未来。
一、什么是平稳性?
时间序列的平稳性是指一组时间序列数据看起来平坦,各阶统计特征(如均值、方差、协方差…)不随时间的变化而变化。其数学定义又分为严平稳和宽平稳。
二、时间序列中的不平稳性
时间序列的不平稳性(non- stationarity)是一个比较难处理,且真实世界中很常见的可题。时间序列的不平稳性指的是随着时间的变化,观测值的均值、方差等统计量发生变化。不平稳性会导致在训谢练集训练的模型,在测试集上效果较差,因为训练集和测试集属于不同时间,而不同时间的数据分布差异较大。
业内解决这种统计量随时间变化的不平稳问题主要方法是,对时间序列数据做一些诸如归一化等平稳化处理。例如对每个序列样本使用z- normalization处理成0均值1方差的,这样就可以解決不同时间步的样本统计量不一致的可题。但是这种解決方法会对Transformer模型帯来一个负面影响:平稳化后的序列虽然統计量一致了,但是这个过程中也让数据损失了ー些个性化的信息,导致不同序列的 Transformer中的 attention矩阵趋同。文中将这个现象叫作over- stationarization。
<