追击问题,是数学或者说是博弈论当中的迷人话题,下面引用一则小学生的数学趣题,供大家欣赏。
-----------------------------------------------------------
一只聪明的小老鼠正在一个圆形的池塘旁边散步,忽然看见一只大花猫正向它追赶过来。小老鼠想逃回自己的家已经不可能了,就在大花猫将要抓住它的一瞬间,它只好纵身跳进了池塘里。大花猫扑了个空,但又舍不得这一顿即将到口的美餐,于是大花猫紧紧地盯住老鼠,在池边跟着老鼠游泳方向跑动,想等老鼠爬上岸来时抓住它。小老鼠估计大花猫奔跑的速度是它自己游泳速度的2.5倍。它在水中一边游一边想,怎样才能逃脱大花猫的利爪呢?让我们一起来研究一下。首先,咱们看看如果小老鼠纵身跳进了池塘里之后沿着圆周游。因为大花猫的速度比小老鼠的速度快很多,所以不管小老鼠游到哪儿,大花猫都能很轻松地抓到它。聪明的小老鼠当然不会这样做。如果小老鼠直接沿直径笔直地游向对岸呢?大花猫正好要跑一个圆的周长的一半,或者说是半个圆周吧。这样小老鼠能逃脱吗?我们算算看。小老鼠游动的路程正好等于圆的直径,也就是半径的2倍。小老鼠佑计大花猫的速度是它自己的2.5倍,那么在相同的时间内,大花猫的路程自然也是小老鼠的2.5倍,也就是半径的5倍了。圆的周长是2πr,也可以说是半径的6倍多,现在大花猫跑了半个圆周,也就是半径3倍多,小老鼠还是不能逃脱大花猫的利爪。
小老鼠如何是好?
本文转自
上一篇讲的是不能坐以待毙,但老眼昏花的盲动也是不可取的,小老鼠当然不是老眼昏花,而是聪明伶俐,当它到达水池的中央,突然发现大花猫正张牙舞爪,呲牙咧嘴的在前面小觑它时,忽然灵机一动,改变策略,从而顺利逃脱...
顺便可以拓展思考一下,大花猫速度的目标是多快时,才能确保抓住小老鼠呢?