剑指 Offer 13. 机器人的运动范围

地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?

 

示例 1:

输入:m = 2, n = 3, k = 1
输出:3
示例 2:

输入:m = 3, n = 1, k = 0
输出:1
提示:

1 <= n,m <= 100
0 <= k <= 20

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/ji-qi-ren-de-yun-dong-fan-wei-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

 

题解:猛的一看题目就是一个走迷宫的题目,限制条件是不能走到坐标位数之和大于k的点,刚开始想用DFS,但是只需算出能够到达的点数即可,甚至想到了扫描所有的点,满足条件的就计数,这样会导致一些不能到达的点却计算在内;最后还是乖乖用BFS。。。

PS 时间上居然击败了100%的C++用户,这真是...

 

class Solution {
public:
    struct node{
        int x, y;
    };
    Solution () {}
    bool canput(int x, int y, int k) {
        int sum_x = 0;
        int sum_y = 0;
        while (x != 0) {
            sum_x += (x%10);
            x /= 10;
        }
        while (y != 0) {
            sum_y += (y%10);
            y /= 10;
        }
        return (sum_x + sum_y) <= k;
    }
    int movingCount(int m, int n, int k) {
        int cnt = 0;
        int vis[105][105];
        memset(vis, 0, sizeof(vis));
        queue<node> q;
        int dx[4] = {0, 1, 0, -1};
        int dy[4] = {1, 0, -1, 0};

        node start;
        start.x = 0;
        start.y = 0;
        q.push(start);
        cnt++;
        vis[0][0] = 1;
        while (!q.empty()) {
            node now = q.front();
            q.pop();
            for (int i = 0; i < 4; ++i) {
                node tmp;
                tmp.x = now.x + dx[i];
                tmp.y = now.y + dy[i];
                if (tmp.x < 0 || tmp.x >= n || tmp.y < 0 || tmp.y >= m)
                    continue;
                if (vis[tmp.x][tmp.y] == 0 && canput(tmp.x, tmp.y, k)) {
                    q.push(tmp);
                    vis[tmp.x][tmp.y] = 1;
                    cnt++;
                }
            }
        }
        return cnt;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值