地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?
示例 1:
输入:m = 2, n = 3, k = 1
输出:3
示例 2:
输入:m = 3, n = 1, k = 0
输出:1
提示:
1 <= n,m <= 100
0 <= k <= 20
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/ji-qi-ren-de-yun-dong-fan-wei-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解:猛的一看题目就是一个走迷宫的题目,限制条件是不能走到坐标位数之和大于k的点,刚开始想用DFS,但是只需算出能够到达的点数即可,甚至想到了扫描所有的点,满足条件的就计数,这样会导致一些不能到达的点却计算在内;最后还是乖乖用BFS。。。
PS 时间上居然击败了100%的C++用户,这真是...
class Solution {
public:
struct node{
int x, y;
};
Solution () {}
bool canput(int x, int y, int k) {
int sum_x = 0;
int sum_y = 0;
while (x != 0) {
sum_x += (x%10);
x /= 10;
}
while (y != 0) {
sum_y += (y%10);
y /= 10;
}
return (sum_x + sum_y) <= k;
}
int movingCount(int m, int n, int k) {
int cnt = 0;
int vis[105][105];
memset(vis, 0, sizeof(vis));
queue<node> q;
int dx[4] = {0, 1, 0, -1};
int dy[4] = {1, 0, -1, 0};
node start;
start.x = 0;
start.y = 0;
q.push(start);
cnt++;
vis[0][0] = 1;
while (!q.empty()) {
node now = q.front();
q.pop();
for (int i = 0; i < 4; ++i) {
node tmp;
tmp.x = now.x + dx[i];
tmp.y = now.y + dy[i];
if (tmp.x < 0 || tmp.x >= n || tmp.y < 0 || tmp.y >= m)
continue;
if (vis[tmp.x][tmp.y] == 0 && canput(tmp.x, tmp.y, k)) {
q.push(tmp);
vis[tmp.x][tmp.y] = 1;
cnt++;
}
}
}
return cnt;
}
};