安装说明
平台:目前可在Ubuntu、Mac OS、Windows上安装
版本:提供gpu版本、cpu版本
安装方式:pip方式、Anaconda方式
Tips:
- 在Windows上目前支持python3.5.x
- gpu版本需要cuda8,cudnn5.1
一、安装环境
TensorFlow即可以支持CPU,也可以支持CPU+GPU。前者的环境需求简单,后者需要额外的支持。TensorFlow是基于VC++2015开发的,所以需要下载安装VisualC++ Redistributable for Visual Studio 2015 来获取MSVCP140.DLL的支持。如果要安装GPU版本(有N卡,即NVIDIA显卡),需要以下额外环境:
0)有支持CUDA计算能力3.0或更高版本的NVIDIAGPU卡。
1)下载安装CUDA Toolkit 8.0,并确保其路径添加到PATH环境变量里;
2)下载安装cuDNN v6或v6.1,并确保其路径添加到PATH环境变量里;
3)CUDA8.0相关的NVIDIA驱动。
二、安装过程
具备了上述安装条件(CPU或GPU)之后,TensorFlow可以通过两种方式进行安装。一是”native” pip,二是Anaconda。
本文中是使用Anaconda安装的,所以详细介绍一下Anaconda安装过程。
1) 下载安装Python 3.5.x 64-bit,要注意版本3.5.x。
2) 下载安装Anaconda;
我下载的是Anaconda4.3.0For Windows 64bit(内置python3.6),下载好了就安装,一直下一步。
1.检查Anaconda是否成功安装:conda --version
2.检测目前安装了哪些环境:conda info --envs
3.检查目前有哪些版本的python可以安装:conda search --full-name python
(tensorflow在win10上只支持python3.5)
4.安装不同版本的python:conda create --name tensorflow python=3.5
5.按照提示,激活之:activate tensorflow
6.确保名叫tensorflow的环境已经被成功添加:conda info --envs
(Bravo!)
7.检查新环境中的python版本:python --version
8.退出当前环境:deactivate
9.切换环境:
activate tensorflow
想切换到哪个环境就 activate哪个~
这篇文章既然是安装tensorflow的,当然要avtivate tensorflow!
————————————————————————————————————————
三、TensorFlow安装
1.按照官网的指示:
安装CPU版本输入
pipinstall –ignore-installed –upgrade tensorflow
安装GPU版本输入
pipinstall –ignore-installed –upgrade tensorflow-gpu
(网络不好,多下载几次就成功了)
2.另一种尝试:
pip install tensorflow
3.确认tensorflow安装成功:
直接在cmd里面键入python,然后键入
import tensorflow as tf
(重要提示:若默认的是python3.6,而自己安装的其他版本,如python3.5,那么小伙子注意啦,要从anaconda进入刚刚装的那个python3.5里面哦!~)
进入Anaconda Prompt-python里面,进入安装的名叫tensorflow的环境(我们装的python3.5.4记得吗?~),键入python,然后再键入import tensorflow as tf
在这里可以找到Anaconda Prompt-python:
打开Anaconda Navigator(开始菜单->Anaconda 3->Anaconda Navigator),搞一个spyder玩,点击spyder下面的“install”,安装好就变成“Launch”了,点击就可以进去了。
在spyder里对tensorflow说Hello!
输出:
四、TensorFlow测试样例详解
在进入python交互界面之后,先通过import操作加载TensorFlow:
上图中显示TensorFlow已经成功加载了。Python可以通过重命名来使引用更加方便,在本文中都会将“tensorflow”简写为“tf”。然后定义两个变量,a和b:
在这里将a和b定义为两个常量(tf.constant),一个为[1.0,2.0],另一个为[2.0,3.0],在两个加数定义好之后,将这两个向量加起来,要输出相加得到的结果,需要先生成一个会话(session),并通过这个会话来计算结果(session):
至此,就实现了一个非常简单的TensorFlow模型。
以上完整代码为:
输出结果显示如下: