TensorFlow在Win10上的安装教程

安装说明

平台:目前可在Ubuntu、Mac OS、Windows上安装 
版本:提供gpu版本、cpu版本 
安装方式:pip方式、Anaconda方式 
Tips:

  1. 在Windows上目前支持python3.5.x
  2. gpu版本需要cuda8,cudnn5.1

一、安装环境

TensorFlow即可以支持CPU,也可以支持CPU+GPU。前者的环境需求简单,后者需要额外的支持。TensorFlow是基于VC++2015开发的,所以需要下载安装VisualC++ Redistributable for Visual Studio 2015 来获取MSVCP140.DLL的支持。如果要安装GPU版本(有N卡,即NVIDIA显卡),需要以下额外环境:

0)有支持CUDA计算能力3.0或更高版本的NVIDIAGPU卡。

1)下载安装CUDA Toolkit 8.0,并确保其路径添加到PATH环境变量里;

2)下载安装cuDNN v6或v6.1,并确保其路径添加到PATH环境变量里;

3)CUDA8.0相关的NVIDIA驱动。 

二、安装过程

         具备了上述安装条件(CPU或GPU)之后,TensorFlow可以通过两种方式进行安装。一是”native” pip,二是Anaconda。

本文中是使用Anaconda安装的,所以详细介绍一下Anaconda安装过程。

 1)  下载安装Python 3.5.x 64-bit,要注意版本3.5.x。

 2) 下载安装Anaconda

 我下载的是Anaconda4.3.0For Windows 64bit(内置python3.6),下载好了就安装,一直下一步。

 1.检查Anaconda是否成功安装:conda --version


  

 2.检测目前安装了哪些环境:conda info --envs

  

 3.检查目前有哪些版本的python可以安装:conda search --full-name python

 

 (tensorflow在win10上只支持python3.5) 
 4.安装不同版本的python:conda create --name tensorflow python=3.5 

 

  

 5.按照提示,激活之:activate tensorflow 


  

 6.确保名叫tensorflow的环境已经被成功添加:conda info --envs 


 (Bravo!) 

 7.检查新环境中的python版本:python --version 


  

 8.退出当前环境:deactivate


  

 9.切换环境:activate tensorflow 

想切换到哪个环境就 activate哪个~ 
这篇文章既然是安装tensorflow的,当然要avtivate tensorflow! 

————————————————————————————————————————

三、TensorFlow安装 

1.按照官网的指示: 

安装CPU版本输入

pipinstall –ignore-installed –upgrade tensorflow

安装GPU版本输入

pipinstall –ignore-installed –upgrade tensorflow-gpu

(网络不好,多下载几次就成功了) 

 2.另一种尝试:pip install tensorflow


3.确认tensorflow安装成功: 

直接在cmd里面键入python,然后键入import tensorflow as tf

(重要提示:若默认的是python3.6,而自己安装的其他版本,如python3.5,那么小伙子注意啦,要从anaconda进入刚刚装的那个python3.5里面哦!~)

进入Anaconda Prompt-python里面,进入安装的名叫tensorflow的环境(我们装的python3.5.4记得吗?~),键入python,然后再键入import tensorflow as tf 

在这里可以找到Anaconda Prompt-python:



打开Anaconda Navigator(开始菜单->Anaconda 3->Anaconda Navigator),搞一个spyder玩,点击spyder下面的“install”,安装好就变成“Launch”了,点击就可以进去了。


在spyder里对tensorflow说Hello! 


输出:



四、TensorFlow测试样例详解

在进入python交互界面之后,先通过import操作加载TensorFlow:


上图中显示TensorFlow已经成功加载了。Python可以通过重命名来使引用更加方便,在本文中都会将“tensorflow”简写为“tf”。然后定义两个变量,a和b:


在这里将a和b定义为两个常量(tf.constant),一个为[1.0,2.0],另一个为[2.0,3.0],在两个加数定义好之后,将这两个向量加起来,要输出相加得到的结果,需要先生成一个会话(session),并通过这个会话来计算结果(session):


至此,就实现了一个非常简单的TensorFlow模型。

以上完整代码为:


输出结果显示如下:



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值