7-1 汽车加油问题 (15分)

题目来源:王晓东《算法设计与分析》

一辆汽车加满油后可行驶 n公里。旅途中有若干个加油站。设计一个有效算法,指出应 在哪些加油站停靠加油,使沿途加油次数最少。

输入格式:
第一行有 2 个正整数n和 k(k<=1000 ),表示汽车加满油后可行驶n公里,且旅途中有 k个加油站。 第二行有 k+1 个整数,表示第 k 个加油站与第k-1 个加油站之间的距离。 第 0 个加油站表示出发地,汽车已加满油。 第 k+1 个加油站表示目的地。

输出格式:
输出最少加油次数。如果无法到达目的地,则输出“No Solution!”。

输入样例:
7 7
1 2 3 4 5 1 6 6
输出样例:
4

#include<iostream>
using namespace std;
int main(){
	int n,k;
	cin>>n>>k;
	int a[2000];
	int i;
	for(i=0;i<=k;i++){
		cin>>a[i];
		if(a[i]>n) {
			cout<<"No Solution!";
			return 0;
		}
	}
	int count=0;//最少加油次数
	int trans;//暂存的油 
     trans=n;
	for(i=0;i<=k;){
		if(trans-a[i]>0) {
			trans=trans-a[i];
			i++;
		}
		else{
			trans=n;
			count++;
		}
	}
	cout<<count;
	
}
1.问题描述 给定一个N*N 的方形网格,设其左上角为起点,坐标为(1,1),X 轴向右为正,Y 轴 向下为正,每个方格边长为1。一辆汽车从起点出发驶向右下角终点,其坐标为(N,N)。 在若干个网格交叉点处,设置了油库,可供汽车在行驶途中加油汽车在行驶过程中应遵守 如下规则: (1)汽车只能沿网格边行驶,装满油后能行驶K 条网格边。出发时汽车已装满油,在 起点与终点处不设油库。 (2)当汽车行驶经过一条网格边时,若其X 坐标或Y 坐标减小,则应付费用B,否则 免付费用。 (3)汽车在行驶过程中遇油库则应加满油并付加油费用A。 (4)在需要时可在网格点处增设油库,并付增设油库费用C(不含加油费用A)。 (5)(1)~(4)中的各数N、K、A、B、C均为正整数。 算法设计: 求汽车从起点出发到达终点的一条所付费用最少的行驶路线。 数据输入: 输入数据。第一行是N,K,A,B,C的值,2 <= N <= 100, 2 <= K <= 10。第二行起是一个N*N 的0-1方阵,每行N 个值,至N+1行结束。方阵的第i 行第j 列处的值为1 表示在网格交叉点(i,j)处设置了一个油库,为0 时表示未设油库。 各行相邻的2 个数以空格隔。 结果输出: 将找到的最优行驶路线所需的费用,即最小费用输出. Sample input 9 3 2 3 6 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 Sample output 12
这是一个经典的旅行商问题(Traveling Salesman Problem, TSP)变体,也称为最短路径问题。在这个问题中,你需要找到从起点到终点经过每个加油站一次,使得总路程最短的同时,考虑到每辆汽车的续航能力。 算法思路: 1. **动态规划**:可以采用动态规划的方法解决,创建一个二维数组或矩阵,表示从起点出发到每个位置的距离以及当前车程已消耗的情况。状态转移方程考虑当前位置是否需要加油,如果能到达下一个位置且距离不超过车程,就继续;否则选择最近的加油加油,并更新状态。 2. **贪心策略**:另一种简化版本可能是使用贪心策略,每次选择离当前位置最近的那个尚未访问的加油站,直到车程耗尽再回起点或到达终点。 代码示例(Python): ```python def find_optimal_stops(distance_matrix, car_range): n = len(distance_matrix) dp = [[float('inf')] * (car_range + 1) for _ in range(n)] dp[0][distance_matrix[0]] = 0 for i in range(1, n): for j in range(car_range + 1): if j >= distance_matrix[i]: dp[i][j] = dp[i - 1][j - distance_matrix[i]] else: # 更新到达位置i时,车程刚好耗尽的情况 dp[i][j] = min(dp[i - 1][k] + distance_matrix[i] for k in range(j, car_range + 1)) return dp[-1][-1] # 示例:距离矩阵表示各点之间的距离,car_range为汽车的最大行驶范围 distance_matrix = [[0, 10, 5], [10, 0, 7], [5, 7, 0]] # 假设城市A-B-C依次为0, 10, 5单位距离 car_range = 15 # 汽车续航15单位距离 optimal_stops = find_optimal_stops(distance_matrix, car_range) ``` 收获: 1. 理解并应用了动态规划或贪心算法解决问题的能力。 2. 对TSP及其变形有了更深入的理解。 3. 学会如何将实际问题转化为数学模型求解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值