基于mapreduce的Hadoop join实现分析(一)

对于一个大数据的分析应用,join是必不可少的一项功能.现在很多构建与hadoop之上的应用,如Hive,PIG等在其内部实现了join程序,可以通过很简单的sql语句或者数据操控脚本完成相应的Join工作.那么join应该如何实现呢?今天我们就对join做一个简单的实现.

我们来看一个例子,现在有两组数据:一组为单位人员信息,如下:

人员ID 人员名称 地址ID

1张三 1

2 李四 2

3 王五 2

4 赵六 3

5 马七 3

另外一组为地址信息:

地址ID 地址名称1

1 北京

2 上海

3广州

这里给出了一个很简单的例子,而且数据量很小,就这么用眼睛就能看过来的几行,当然,实际的情况可能是几十万上百万甚至上亿的数据量.要实现的功能很简单,就是将人员信息与地址信息进行join,将人员的地址ID完善成为地址名称.对于Hadoop文件系统的应用,目前看来,很多数据的存储都是基于文本的,而且都是将数据放在一个文件目录中进行处理.因此我们这里也采用这种模式来完成.

对于mapreduce程序来说,最主要的就是将要做的工作转化为map以及reduce两个部分.我们可以将地址以及人员都采用同样的数据结构来存储,通过一个flag标志来指定该数据结构里面存储的是地址信息还是人员信息.经过map后,使用地址ID作为key,将所有的具有相同地址的地址信息和人员信息放入一个key->value list数据结构中传送到reduce中进行处理.在reduce过程中,由于key是地址的ID,所以value list中只有一个是地址信息,其他的都是人员信息,因此,找到该地址信息后,其他的人员信息的地址就是该地址所指定的地址名称.

OK,我们的join算法基本搞定啦.剩下就是编程实现了,let’s go.

上面提到了存储人员和地址信息的数据结构,可以说这个数据结构是改程序的重要的数据载体之一.我们先来看看该数据结构:


import java.io.DataInput;

import java.io.DataOutput;

import java.io.IOException;

import org.apache.hadoop.io.WritableComparable;


publicclass RecordimplementsWritableComparable {

inttype;//数据类型的定义,1为人员,2为地址

StringempName="";

StringempId="";

StringlocId="";

StringlocationName="";

public Record(){

super();

}

public Record(Record record){

this.type = record.type;

this.empName = record.empName;

this.empId = record.empId;

this.locId = record.locId;

this.locationName = record.locationName;

}

public String toString(){

if(type == 1)

returnempId+","+empName+","+locationName;

elseif(type == 2)

returnlocId+","+locationName;

return"uninit data!";

}


publicvoid readFields(DataInput in)throws IOException {

type = in.readInt();

empName = in.readUTF();

empId = in.readUTF();

locId = in.readUTF();

locationName = in.readUTF();

}


publicvoid write(DataOutput out)throws IOException {

out.writeInt(type);

out.writeUTF(empName);

out.writeUTF(empId);

out.writeUTF(locId);

out.writeUTF(locationName);

}


publicint compareTo(Object arg0) {

return 0;

}

}

上面的Record的实现了WritableComparable,对于Mapreduce的中间结果类来说,必须要实现Writable,从而在map完成输出中间结果时能够将中间结果写入到运行job的node文件系统中,至于Comparable接口的实现,对于作为Key的中间结果来说需要实现该接口,从而能够完成基于key的排序功能.

接下来是Join的主程序,就是mapreduce的主程序.基本的主程序如下:

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.SequenceFile;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapred.JobClient;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapred.SequenceFileOutputFormat;


publicclass Join {

publicstaticvoid main(String[] args)throws Exception {

//TODO Auto-generated method stub

JobConf conf =new JobConf(Join.class);

conf.setJobName("Join");

FileSystem fstm = FileSystem.get(conf);

Path outDir =new Path("/Users/hadoop/outputtest");

fstm.delete(outDir,true);


conf.setOutputFormat(SequenceFileOutputFormat.class);

conf.setMapOutputValueClass(Record.class);

conf.setOutputKeyClass(LongWritable.class);

conf.setOutputValueClass(Text.class);

conf.setMapperClass(JoinMapper.class);

conf.setReducerClass(JoinReducer.class);

FileInputFormat.setInputPaths(conf,new Path(

"/user/hadoop/input/join"));

FileOutputFormat.setOutputPath(conf, outDir);


JobClient.runJob(conf);


Path outPutFile =new Path(outDir,"part-00000");

SequenceFile.Reader reader =new SequenceFile.Reader(fstm, outPutFile,

conf);

org.apache.hadoop.io.Text numInside =new Text();

LongWritable numOutside =new LongWritable();

while (reader.next(numOutside, numInside)) {

System.out.println(numInside.toString() +" "

+ numOutside.toString());

}

reader.close();

}


}

程序主体很简单,开始将输出目录删除,中间进行一系列的JobConf设定工作,将输出格式设为SequenceFile,最后读出程序结果到控制台.接下来我们看看Mapper的实现:

import java.io.IOException;


import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reporter;

import org.apache.hadoop.io.*;


publicclass JoinMapperextends MapReduceBase 

implements Mapper<LongWritable, Text, LongWritable, Record> {


publicvoid map(LongWritable key, Text value,

OutputCollector<LongWritable, Record> output, Reporter reporter)

throws IOException {

String line = value.toString();

String[] values = line.split(",");

if(values.length == 2){//这里使用记录的长度来区别地址信息与人员信息,当然可以通过其他方式(如文件名等)来实现

Record reco =new Record();

reco.locId = values[0];

reco.type = 2;

reco.locationName = values[1];

output.collect(new LongWritable(Long.parseLong(values[0])), reco);

}else{

Record reco =new Record();

reco.empId = values[0];

reco.empName = values[1];

reco.locId = values[2];

reco.type = 1;

output.collect(new LongWritable(Long.parseLong(values[2])), reco);

}

}

}

对于maper来说,就是从输入文件中读取相应数据构造key->value(地址id->地址或者人员对象)的数据对,并交给hadoop框架完成shuffle等工作.经过hadoop框架完成suffle之后便会将具有想同地址ID的人员信息以及地址信息交给reducer来进行处理.

好啦,剩下就是最后一步了,其实也是最重要的一步就是reduce端的join工作了.还是来看看代码吧:


import java.io.IOException;

import java.util.Iterator;

import java.util.List;

import java.util.Vector;


import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.Reporter;


publicclass JoinReducer extends MapReduceBaseimplements

Reducer<LongWritable, Record, LongWritable, Text> {

publicvoid reduce(LongWritable key, Iterator<Record> values,

            OutputCollector<LongWritable, Text> output, 

            Reporter reporter)throws IOException {

System.out.println("reducer for key "+key.toString());

Record thisLocation=new Record();

List<Record> employees=new Vector<Record>();

while (values.hasNext()){

Record reco = values.next();

if(reco.type ==  2){//2 is the location

thisLocation =new Record(reco);

//thisLocation =reco;

System.out.println("location is "+ thisLocation.locationName);

}else//1 is employee

Record recoClone =new Record(reco);

employees.add(recoClone);

//employess.add(reco);

System.out.println(" employess "+ reco.toString());

}

}


for(Record e : employees){

e.locationName = thisLocation.locationName;

output.collect(new LongWritable(0),new Text(e.toString()));

}

System.out.println("+++++++++++++++");

}

}

在reducer端,我们先构造了一个地址对象,thisLocation用来保存地址信息.在reducer的迭代器values中,如果某个value是地址,就将其保存到thisLocation中.否则就将人员信息加入到List中以供后面打印.

这个reducer中有两点需要非常注意:

一,在while (values.hasNext())的循环中的thisLocation =new Record(reco)以及Record recoClone =new Record(reco)语句,我们不能直接保存reducer的迭代器中的对象,因为迭代器中每次返回的对象都是同一个Object,但是具有不同的值.注意,一定要注意.

二,这个是一个比较蹩脚的reduce实现,从程序中我们可以看到.我们用了一个List来保存某个地址ID的所有人员信息,对于一个非常巨大的应用来说,某个地址ID可能具有大于List长度的人员信息,这就会造成List溢出.下次对该程序进行优化从而能够避免该现象.

好啦,看看数据和程序的运行结果吧!

$ ./hadoop fs -cat input/join/names

1,张三,1

2,李四,2

3,王五,1

4,赵六,3

5,马七,3


$ ./hadoop fs -cat input/join/locations

1,北京

2,上海

3,广州


运行程序:

09/11/20 21:44:09 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.

09/11/20 21:44:10 INFO mapred.FileInputFormat: Total input paths to process : 2

09/11/20 21:44:11 INFO mapred.JobClient: Running job: job_200911202139_0001

09/11/20 21:44:12 INFO mapred.JobClient:  map 0% reduce 0%

09/11/20 21:44:24 INFO mapred.JobClient:  map 33% reduce 0%

09/11/20 21:44:26 INFO mapred.JobClient:  map 66% reduce 0%

09/11/20 21:44:28 INFO mapred.JobClient:  map 100% reduce 0%

09/11/20 21:44:35 INFO mapred.JobClient:  map 100% reduce 100%

09/11/20 21:44:36 INFO mapred.JobClient: Job complete: job_200911202139_0001

09/11/20 21:44:37 INFO mapred.JobClient: Counters: 16

09/11/20 21:44:37 INFO mapred.JobClient:   File Systems

09/11/20 21:44:37 INFO mapred.JobClient:     HDFS bytes read=97

09/11/20 21:44:37 INFO mapred.JobClient:     HDFS bytes written=246

09/11/20 21:44:37 INFO mapred.JobClient:     Local bytes read=243

09/11/20 21:44:37 INFO mapred.JobClient:     Local bytes written=582

09/11/20 21:44:37 INFO mapred.JobClient:   Job Counters 

09/11/20 21:44:37 INFO mapred.JobClient:     Launched reduce tasks=1



转载地址:http://labs.chinamobile.com/mblog/4110_32505



上次我们讨论了基于mapreduce的join的实现,在上次讨论的最后,我们对这个实现进行了总结,最主要的问题就是实现的可扩展性,由于在reduce端我们通过一个List数据结构保存了所有的某个外键的对应的所有人员信息,而List的最大值为Integer.MAX_VALUE,所以在数据量巨大的时候,会造成List越界的错误.所以对这个实现的优化显得很有必要.

我们再来看一下这个例子,现在有两组数据:一组为单位人员信息,如下:

人员ID 人员名称 地址ID

1 张三 1

2 李四 2

3 王五 1

4 赵六 3

5 马七 3

另外一组为地址信息:

地址ID 地址名称

1 北京

2 上海

3 广州

结合第一种实现方式,我们看到第一种方式最需要改进的地方就是如果对于某个地址ID的迭代器values,如果values的第一个元素是地址信息的话,那么,我们就不需要缓存所有的人员信息了.如果第一个元素是地址信息,我们读出地址信息后,后来就全部是人员信息,那么就可以将人员的地址置为相应的地址.

现在我们回头看看mapreduce的partition和shuffle的过程,partitioner的主要功能是根据reduce的数量将map输出的结果进行分块,将数据送入到相应的reducer,所有的partitioner都必须实现Partitioner接口并实现getPartition方法,该方法的返回值为int类型,并且取值范围在0-numOfReducer-1,从而能够将map的输出输入到相应的reducer中,对于某个mapreduce过程,Hadoop框架定义了默认的partitioner为HashPartition,该Partitioner使用key的hashCode来决定将该key输送到哪个reducer;shuffle将每个partitioner输出的结果根据key进行group以及排序,将具有相同key的value构成一个valeus的迭代器,并根据key进行排序分别调用开发者定义的reduce方法进行归并.从shuffle的过程我们可以看出key之间需要进行比较,通过比较才能知道某两个key是否相等或者进行排序,因此mapduce的所有的key必须实现comparable接口的compareto()方法从而实现两个key对象之间的比较.

回到我们的问题,我们想要的是将地址信息在排序的过程中排到最前面,前面我们只通过locId进行比较的方法就不够用了,因为其无法标识出是地址表中的数据还是人员表中的数据.因此,我们需要实现自己定义的Key数据结构,完成在想共同locId的情况下地址表更小的需求.由于map的中间结果需要写到磁盘上,因此必须实现writable接口.具体实现如下:

import java.io.DataInput;

import java.io.DataOutput;

import java.io.IOException;


import org.apache.hadoop.io.WritableComparable;


public class RecordKey implements WritableComparable<RecordKey>{

int keyId;

boolean isPrimary;


public void readFields(DataInput in) throws IOException {

// TODO Auto-generated method stub

this.keyId = in.readInt();

this.isPrimary = in.readBoolean();

}


public void write(DataOutput out) throws IOException {

// TODO Auto-generated method stub

out.writeInt(keyId);

out.writeBoolean(isPrimary);

}

public int compareTo(RecordKey k) {

// TODO Auto-generated method stub

if(this.keyId == k.keyId){

if(k.isPrimary == this.isPrimary)

return 0;

return this.isPrimary? -1:1;

}else

return this.keyId > k.keyId?1:-1;

}

@Override

public int hashCode() {

    return this.keyId;

}

}

这个key的数据结构中需要解释的方法就是compareTo方法,该方法完成了在keyId相同的情况下,确保地址数据比人员数据小.

有了这个数据结构,我们又发现了一个新的问题------就是shuffle的group过程,shuffle的group过程默认使用的是key的compareTo()方法.刚才我们添加的自定义Key没有办法将具有相同的locId的地址和人员放到同一个group中(因为从compareTo方法中可以看出他们是不相等的).不过hadoop框架提供了OutputValueGoupingComparator可以让使用者自定义key的group信息.我们需要的就是自己定义个groupingComparator就可以啦!看看这个比较器吧!

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

import org.apache.hadoop.io.WritableComparable;

import org.apache.hadoop.io.WritableComparator;


public class PkFkComparator extends WritableComparator {


public PkFkComparator(){

super(RecordKey.class);

}

@Override

public int compare(WritableComparable a, WritableComparable b) {

RecordKey key1 = (RecordKey)a;

RecordKey key2 = (RecordKey)b;

System.out.println("call compare");

if(key1.keyId == key2.keyId){

return 0;

}else

return key1.keyId > key2.keyId?1:-1;

}

}

这里我们重写了compare方法,将两个具有相同的keyId的数据设为相等.

好了,有了这两个辅助工具,剩下的就比较简单了.写mapper,reducer,以及主程序. 


import java.io.IOException;


import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reporter;


import org.apache.hadoop.io.*;


public class JoinMapper extends MapReduceBase 

implements Mapper<LongWritable, Text, RecordKey, Record> {


public void map(LongWritable key, Text value,

OutputCollector<RecordKey, Record> output, Reporter reporter)

throws IOException {

String line = value.toString();

String[] values = line.split(",");

if(values.length == 2){ //这里使用记录的长度来区别地址信息与人员信息,当然可以通过其他方式(如文件名等)来实现

Record reco = new Record();

reco.locId = values[0];

reco.type = 2;

reco.locationName = values[1];

RecordKey recoKey = new RecordKey();

recoKey.keyId = Integer.parseInt(values[0]);

recoKey.isPrimary = true;

output.collect(recoKey, reco);

}else{

Record reco = new Record();

reco.locId = values[2];

reco.empId = values[0];

reco.empName = values[1];

reco.type = 1;

RecordKey recoKey = new RecordKey();

recoKey.keyId = Integer.parseInt(values[2]);

recoKey.isPrimary = false;

output.collect(recoKey, reco);

}

}

}


import java.io.IOException;

import java.util.Iterator;


import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reducer;

import org.apache.hadoop.mapred.Reporter;


public class JoinReducer  extends MapReduceBase implements

Reducer<RecordKey, Record, LongWritable, Text> {

public void reduce(RecordKey key, Iterator<Record> values,

            OutputCollector<LongWritable, Text> output, 

            Reporter reporter) throws IOException {

Record thisLocation= new Record();

while (values.hasNext()){

Record reco = values.next();

if(reco.type ==  2){ //2 is the location

thisLocation = new Record(reco);

System.out.println("location is "+ thisLocation.locationName);

}else//1 is employee

reco.locationName =thisLocation.locationName;

System.out.println("emp is "+reco.toString());

output.collect(new LongWritable(0), new Text(reco.toString()));

}

}

}

}



import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.SequenceFile;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.FileInputFormat;

import org.apache.hadoop.mapred.FileOutputFormat;

import org.apache.hadoop.mapred.JobClient;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapred.SequenceFileOutputFormat;



public class Join {

/**

* @param args

*/

public static void main(String[] args) throws Exception {

// TODO Auto-generated method stub


JobConf conf = new JobConf(Join.class);

conf.setJobName("Join");

FileSystem fstm = FileSystem.get(conf);

Path outDir = new Path("/Users/outputtest");

fstm.delete(outDir, true);


conf.setOutputFormat(SequenceFileOutputFormat.class);

conf.setMapOutputKeyClass(RecordKey.class);

conf.setMapOutputValueClass(Record.class);

conf.setOutputKeyClass(LongWritable.class);

conf.setOutputValueClass(Text.class);

conf.setMapperClass(JoinMapper.class);

conf.setReducerClass(JoinReducer.class);


conf.setOutputValueGroupingComparator(PkFkComparator.class);


FileInputFormat.setInputPaths(conf, new Path(

"/user/input/join"));

FileOutputFormat.setOutputPath(conf, outDir);


JobClient.runJob(conf);


Path outPutFile = new Path(outDir, "part-00000");

SequenceFile.Reader reader = new SequenceFile.Reader(fstm, outPutFile,

conf);

org.apache.hadoop.io.Text numInside = new Text();

LongWritable numOutside = new LongWritable();

while (reader.next(numOutside, numInside)) {

System.out.println(numInside.toString() + " "

+ numOutside.toString());

}

reader.close();

}


}

好了,基本的程序就在这里了.这就是一个比较完整的join的实现,这里对数据中的噪声没有进行处理,如果数据中有噪声数据,可能会导致程序的运行错误,还需要进一步提高程序的健壮性.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值