“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
对象:鸡和兔子。
假设法:
问题:11个头,28条腿。
假设全是鸡,则算腿有:11*2=22条
少了腿:28-22=6条
多出6条腿可补给鸡各两条:6/2=3
而现实中4条腿的鸡不存在,故那3只4条腿的鸡是兔子,兔子数量为3.
鸡的数量为11-3=8
故鸡有8只,兔子有3只!!
假设全是兔子,算腿有4*11=44条腿
多了腿:44-28=16条。
多出的16条腿补给每只兔子两条腿:16/2=8只。
而6条腿的兔子不存在,故那8只6条腿的兔子是鸡,鸡的数量为8.
兔子的数量为:11-8=3.
故鸡有8只,兔子有3只!!
假设法式,腿为legs,头为heads
1、假设全为鸡:rabbits=(heads-(2legs))/2
2、假设全为兔:hens==(heads-(4egs))/2
抬腿法:
问题:11个头,28条腿。
鸡兔都收起一半的腿:28*2=14条
此时,鸡的头数对应腿数,兔子的头数是兔腿的一半。
我们推出:腿比头多出的数量就是兔的数量。
兔子的数量为:14-11=3只
抬腿法:rabbits=legs/2-heads
hens=heads=rabbits
差量法:卖兔 买鸡法
问题:鸡兔107只,同笼,兔脚比鸡脚多56条,问鸡兔各几只?
卖兔
保证兔脚和鸡脚一样多!
56/4=14只。有14只兔子是确定的。
现数:107-14=93只
93只脚里,兔脚和鸡脚一样多,而鸡数是兔数的两倍。
假设兔子占一份,鸡占两份
93/3=31
现兔子有31只
鸡有31*2=62只。
故答案是:鸡有62只,兔子数有现在的数加上卖出去兔子的数:31+14=45只。!!
买鸡:
保证保证兔脚和鸡脚一样多!
56/2=28只。要买28只鸡。
现数107+28=135只。
135的只数里,兔子占1份,鸡站两份
135*3=45.
现数兔子数量为45只。鸡的数量为90只。
除去买入的鸡:90-28=62只鸡
条件判断:头的数量要>0; 腿的数量>0
4*头>=腿 ;2*头<=腿