给出两个平行于坐标轴的矩形A、B。求A、B是否相交:如果两个矩形四条边上有任何一点重合,则输出YES,否则输出NO。
Description
多组测试数据(不超过1000组)。
第一行四个整数,x1、y1、x2、y2,(x1,y1)、(x2,y2)表示A矩形对角上的两个点;
第二行四个整数,x3、y3、x4、y4,(x3,y3)、(x4,y4)表示B矩形对角上的两个点。
数据保证A、B矩形是存在的,并且矩形坐标绝对值不大于100。
第一行四个整数,x1、y1、x2、y2,(x1,y1)、(x2,y2)表示A矩形对角上的两个点;
第二行四个整数,x3、y3、x4、y4,(x3,y3)、(x4,y4)表示B矩形对角上的两个点。
数据保证A、B矩形是存在的,并且矩形坐标绝对值不大于100。
Input
每组测试数据输出对应的结果。
Output
1
2
3
4
|
1 1 3 3
2 2 4 4
1 1 2 2
3 3 4 4
|
Sample Input
1
2
|
YES
NO
|
/*
*
题解:
用一个mp存矩形的四条边,第一个矩形标记1,第二个矩形标记为2;
暴力搜索一下就可以AC了
坑点是可能出现负数
*/
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<stdlib.h>
#include<string.h>
using namespace std;
struct node
{
int x, y;
};
int mp[405][405];//y行x列
void fcol(int ss, int tt,int col,int num)//第几列ss-tt
{
int _min = min(ss, tt);
int _max = max(ss, tt);
for (int i = _min; i <= _max; i++)
{
mp[i][col]=num;
}
}
void frow(int ss, int tt,int row,int num)
{
int _min = min(ss, tt);
int _max = max(ss, tt);
for (int i = _min; i <= _max; i++)
{
mp[row][i]=num;
}
}
void frec(node rec1[5],int num)
{
frow(rec1[1].x, rec1[3].x, rec1[1].y,num);
fcol(rec1[1].y, rec1[3].y, rec1[3].x,num);
frow(rec1[1].x, rec1[3].x, rec1[3].y,num);
fcol(rec1[1].y, rec1[3].y, rec1[1].x,num);
}
int main()
{
node rec1[5], rec2[5];
while (cin >> rec1[1].x >> rec1[1].y >> rec1[3].x >> rec1[3].y)
{
cin >> rec2[1].x >> rec2[1].y >> rec2[3].x >> rec2[3].y;
//有可能出现负数
rec1[1].x += 100;
rec1[1].y += 100;
rec2[3].x += 100;
rec2[3].y += 100;
rec1[3].x += 100;
rec1[3].y += 100;
rec2[1].x += 100;
rec2[1].y += 100;
memset(mp, 0, sizeof(mp));
//第一个矩形标记1
frec(rec1,1);
frec(rec2,2);
int flag = 0;
for (int i = min(rec1[1].y, rec1[3].y); i <= max(rec1[1].y, rec1[3].y)&&!flag; i++)
{
if (mp[i][rec1[1].x] == 2 || mp[i][rec1[3].x] == 2)
{
flag = 1;
}
}
for (int i = min(rec1[1].x, rec1[3].x); i <= max(rec1[1].x, rec1[3].x)&&!flag; i++)
{
if (mp[rec1[1].y][i] == 2 || mp[rec1[3].y][i] == 2)
{
flag = 1;
}
}
if (flag)
{
cout << "YES\r\n";
}
else
{
cout << "NO\r\n";
}
}
return 0;
}