1. 并查集:对多个集合的合并以及集合内元素的关系(看是不是在同一个集合)
2. 基本操作:
a. 初始化(每个元素的父亲是自己)
b. 查找(元素x的父亲)
c. 合并(将x和y合并到同一个集合,即让它们拥有同一个父亲)
注意:在合并时采用路径压缩方法会提高查找时的效率。
3. 示例
4. 代码
#include <bits/stdc++.h>
using namespace std;
int father[100];//i结点的父亲
void init(int n)//n表示一共有n个结点
{
for(int i=0; i<n; i++)
{
father[i]=i;
}
}
int Find(int x)
{
if(father[x]!=x)
{
father[x]=Find(father[x]);//递归实现
}
return father[x];
}
void Union(int x, int y)
{
x=Find(x);
y=Find(y);
if(x==y)
{
return;
}
father[x]=y;//将x所在的集合合并到y上
}
int n, m, q;//n为点数,m为边数,q为查询次数
int main()
{
cin>>n>>m;
//初始化
init(n);
for(int i=0; i<m; i++)
{
int u, v;
cin>>u>>v;
Union(u, v);//合并
}
//查找
cin>>q;
while(q--)
{
int x, y;
cin>>x>>y;
x=Find(x);
y=Find(y);
if(x==y)
{
cout<<"in the same set"<<endl;
}
else
{
cout<<"in different set"<<endl;
}
}
return 0;
}
/*
6 4
1 2
2 3
4 5
5 6
4
1 3
2 4
5 6
6 1
*/