-
题解: 首先由于不会有三条对角线交于一点,所以过某一个交点有且只能有2条对角线;而这两条对角线实质上是确定了4个顶点(也可以看做是一个四边形的两条对角线交于一点,求四边形的数量);因此我们只需要确定4个顶点就得到了这个唯一确定的交点;因此我们只需要求这样4个顶点的搭配有多少个了,也就是从n个顶点中取4个出来。
根据组合数的公式,(如果你不知道组合数的公式可以这么推:第一次取可以n个点都是可以取的,第二次取的时候第一个取的点就不能取了,所以只能取(n-1)种,以此类推);由于改变四个点的顺序不会改变对角线,因此是求的组合而不是排列,也就要除以4!,也就是24;于是我们就得到了公式: n * (n-1) * (n-2) * (n-3) / 24;同时为了防止爆掉,但又不想写高精,我们可以采用一种化简的技巧;于是原式可以化为:n * (n-1) / 2 * (n-2) / 3 * (n-3) / 4
那为什么这样一定是对的呢?难道不会因为除不尽却向下取整而导致错误吗?
事实上是一定除得尽的
首先n和n-1一定有一个是2的倍数,因此2可以除尽,同理n,n-1,n-2中一定有一个是3的倍数,因此3可以除尽(除掉2只会消除因数2而对3没有影响);同理4也可以除尽 -
注意点: 所有的Java基本数据类型均是有上下限的
当要输入或输出的数超出此范围时,则需用BigInteger和BigDecimal两个类
BigInteger和BigDecimal分别表示大整数类和大浮点数类,这两个类理论上 能够表示无限大的数 -
valueOf 数据类型之间的相互转换
-
BigInteger multiply(BigInteger val) 返回两个大整数的积;
BigInteger divide(BigInteger val) 返回两个大整数的商; -
BigDecimal同理
但:BigDecimal用scale()表示小数位数;对BigDecimal做加、减、乘时,精度不会丢失,但是做除法时,存在无法除尽的情况,这时,就必须指定精度以及如何进行截断
import java.math.*;
import java.util.Scanner;
public class Main{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
BigInteger sum=BigInteger.valueOf(n);
sum=sum.multiply(BigInteger.valueOf(n-1));
sum=sum.multiply(BigInteger.valueOf(n-2));
sum=sum.multiply(BigInteger.valueOf(n-3));
sum=sum.divide(BigInteger.valueOf(24));
System.out.print(sum);
}
}
- 说明/提示
数据规模与约定 - 对于 50% 的数据,保证 3 ≤ n ≤ 100
- 对于 100% 的数据,保证 3≤n≤10^5
- (因而定义数据时应注意类型,此处使用 大数 处理方法)