首先由于不会有三条对角线交于一点,所以过某一个交点有且只能有2条对角线。
两条对角线实质上是确定了4个顶点,四个顶点构成一个四边形,所以问题就转换为求四边形的数量。
然而我们只需要确定4个顶点就得到了这个唯一确定的交点,确定一个四边形。
因此我们只需要求这样4个顶点的搭配有多少个了
也就是从n个顶点中取4个出来,即为(m=4)。
化简过后变为: n (n-1) (n-2) * (n-3) / 24;
由于当N过大时会爆longlong
可以把式子转化为:n (n-1) / 2 (n-2) / 3 * (n-3) / 4
来个题试试
题目描述
对于一个N个定点的凸多边形,他的任何三条对角线都不会交于一点。请求出图形中对角线交点的个数。
例如,6边形:
输入
第一行一个n,代表边数。3≤n≤100000.
输出
第一行输出交点数量.
样例输入
6
样例输出
15
来源/分类
代码实现
#include<stdio.h>
int main()
{
unsigned long long n;
scanf("%llu",&n);
printf("%llu\n",n*(n-1)/2*(n-2)/3*(n-3)/4);
return 0;
}