关于(n^2-mn-m^2)^2=1的自然数解的研究

问题:对于 (n2mnm2)2=1 ,求其自然数解集合。
不妨设n>m,那么上式就成了 n2mnm2=1

而如果(n,m)符合上式,那么(m,n-m)也符合上式:

m2(nm)m(nm)2=m2n(nm)=n2+mn+m2=1

同理如果(n,m)符合,(n+m,n)也符合。

那么,根据欧几里得算法,任何一个合法的(n,m),不断更相减损之后必会得到(g,0),g是n,m的gcd。
那么把0代入上式,解出n=1.
即不断更相减损之后必会得到(1,0)。

当m≤1时,解一下方程即可得到合法的解是(1,0),(1,1),(2,1).
当m>1时,必有n≤2m,因为如果n>2m,就有 n(nm)>2m2>1+m2 。所以假如说我们便可以不断以(m,n-m)替换(n,m)直到m≤1,即直到变成(2,1)。相反的,我们便也可以从(2,1)开始,不断以(n+m,n)替换(n,m)而得到所有解。

即对于 合法的(n,m)必然存在i≥0使得 n=fii+1,m=fii {fin} 为fibonacci数列。

### 回答1: 这个命题是正确的。换句话说,对于任何自然数$m$,$m$的立方都可以写成$m$个连续奇数之和的形式。 具体地,设$m$为任意自然数,则$m$的立方可以表示为$m$个连续奇数之和的形式: $$ m^3=n+(n+2)+(n+4)+\cdots+(n+2(m-1)) $$ 其中$n$为某个整数。对上式进行化简可以得到: $$ m^3=mn+m(m-1)=m^2n+m(1-m+m)=m^2n-m^2+m+m^2 $$ 移项得: $$ m^3=(n-m+1)+(n-m+3)+(n-m+5)+\cdots+(n+m-3)+(n+m-1) $$ 其中$n=\frac{m^2+m}{2}$,可以验证这$m$个数恰好是连续的奇数。因此,任何一个自然数$m$的立方均可写成$m$个连续奇数之和的形式。 ### 回答2: 对于任意一个自然数 $m$,我们可以将其立方表示为 $(m-1)^3 + 3(m-1)^2 + 3(m-1) + 1$。展开式子后,可以得到一个关于 $m$ 的表达式:$m^3 = 1 + 3 + 5 + \cdots + (2m - 1)$。 那么如何证明这个表达式呢?我们可以采用数学归纳法来证明。 1. 当 $m=1$ 时,等式左边为 $1^3 = 1$,右边为 $1$,显然成立。 2. 假设等式对于 $m=k$ 成立,即 $k^3 = 1 + 3 + 5 + \cdots + (2k-1)$。 3. 当 $m=k+1$ 时,我们可以将 $(k+1)^3$ 表示为 $(k^3 + 3k^2 + 3k + 1)$。根据归纳假设,我们可以将 $k^3$ 表示为 $1 + 3 + 5 + \cdots + (2k-1)$。 接下来,我们只需要证明 $3k^2 + 3k$ 可以表示为 $(2k + 1) + (2k + 3) + \cdots + (2k + 2k - 1)$ 即可。 $(2k+1)+(2k+3)+(2k+5)+\cdots+(2k+(2k-1))$ $=2k^2+k+2k^2+k+2k+1+2k^2+k+4k+3+\cdots+2k^2+k+4k+2k-1$ $=m(2k)+(k+1)+(k+2)+\cdots+(k+2k-1)$ (其中,$m$ 为 $k$ 与 $(k+1)$ 之间的奇数,即 $m=2k+1$) $=m(2k)+k^2+k+(k+1)+(k+2)+\cdots+(k+2k-1)-k^2$ $=m(2k)+(k+1)+(k+2)+\cdots+(k+2k-1)+(k^2+k)$ 由于 $m=2k+1$,因此 $3k^2 + 3k = m(2k) + (k+1)+(k+2) + \cdots + (k+2k-1) + (k^2+k)$。 所以可以得到 $(k+1)^3 = 1 + 3 + 5 + \cdots + (2k-1) + (2k+1) + (2k+3) + \cdots + (2k+2k-1)$。 根据数学归纳法,对于任意一个自然数 $m$,其立方均可写成 $m$ 个连续奇数之和。证毕。 ### 回答3: 这个问题涉及到代数和数学归纳法的知识。 根据代数的知识,一个自然数m的立方可以表示为: m^3 = (m-1)^3 + 3(m-1)^2 + 3(m-1) + 1 通过展开上述公式,可以得到: m^3 = (2m-1) + (2m-3) + ... + (m+1) + m + (m-1) + ... + 3 + 1 上式中的每一个括号表示一个奇数。因此,可以将m的立方表示为m个连续奇数之和。例如,当m=4时,有: 4^3 = 7 + 9 + 11 + 13 + 15 + 17 + 19 将上面的式子套到数学归纳法中,假设对于任意一个自然数k,都可以将k的立方表示为k个连续奇数之和。现在需要证明当k+1时,仍然可以将(k+1)的立方表示为(k+1)个连续奇数之和。首先,根据代数知识,可以得到: (k+1)^3 = k^3 + 3k^2 + 3k + 1 将假设代入上式中,可以得到: (k+1)^3 = (2k-1) + (2k-3) + ... + (k+2) + (k+1) + k + ... + 3 + 1 + 3k^2 + 3k 合并同类项,可以得到: (k+1)^3 = (2k+1) + (2k-1) + ... + (k+3) + (k+1) + (k-1) + ... + 1 以上的式子仍然表示为k+1个连续的奇数之和,因此原命题被证明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值