三角函数积分的换元法

对于三角函数有理式的积分 ∫ R ( cos ⁡ x , sin ⁡ x ) d x \int R(\cos x, \sin x) d x R(cosx,sinx)dx
可以利用万能公式进行计算,但是也可以采用其它替换方法

  • 如果 R ( cos ⁡ x , − sin ⁡ x ) = − R ( cos ⁡ x , sin ⁡ x ) R(\cos x, -\sin x)=-R(\cos x, \sin x) R(cosx,sinx)=R(cosx,sinx)则用:
    t = cos ⁡ x t=\cos x t=cosx 进行替换。
  • 如果 R ( − cos ⁡ x , sin ⁡ x ) = − R ( cos ⁡ x , sin ⁡ x ) R(-\cos x, \sin x)=-R(\cos x, \sin x) R(cosx,sinx)=R(cosx,sinx)则用:
    t = sin ⁡ x t=\sin x t=sinx 进行替换。
  • 如果 R ( − cos ⁡ x , − sin ⁡ x ) = R ( cos ⁡ x , sin ⁡ x ) R(-\cos x, -\sin x)=R(\cos x, \sin x) R(cosx,sinx)=R(cosx,sinx)则用:
    t = tan ⁡ x t=\tan x t=tanx 进行替换。

如果不符合上述所有情况,则可以进行万能公式替换,然后通过有理函数积分进行求解。

证明(此处只证明1、3,2和1雷同):

①我们令:
R ( cos ⁡ x , sin ⁡ x ) sin ⁡ x = R 1 ( cos ⁡ x , sin ⁡ x ) \frac{R(\cos x, \sin x) }{\sin x}= R_1(\cos x, \sin x) sinxR(cosx,sinx)=R1(cosx,sinx)
则有:
R 1 ( cos ⁡ x , − sin ⁡ x ) = R ( cos ⁡ x , − sin ⁡ x ) − sin ⁡ x = R ( cos ⁡ x , sin ⁡ x ) sin ⁡ x = R 1 ( cos ⁡ x , sin ⁡ x ) R_1(\cos x, -\sin x)=\frac{R(\cos x, -\sin x) }{-\sin x}=\frac{R(\cos x, \sin x) }{\sin x}=R_1(\cos x, \sin x) R1(cosx,sinx)=sinxR(cosx,sinx)=sinxR(cosx,sinx)=R1(cosx,sinx)
根据上式,我们可知 sin ⁡ x \sin x sinx是以偶数次方的形式出现,因此我们令:
R 1 ( cos ⁡ x , sin ⁡ x ) = R 2 ( cos ⁡ x , sin ⁡ 2 x ) R_1(\cos x, \sin x)=R_2(\cos x, \sin^2 x) R1(cosx,sinx)=R2(cosx,sin2x)
根据此进行积分可得:
$\int R(\cos x, \sin x) d x=\int R_1(\cos x, \sin x)\sin x d x=\int R_2(\cos x, \sin^2 x)\sin x d x=-\int R_2(\cos x, \sin^2 x) d \cos x
$
我们令 t = cos ⁡ x t=\cos x t=cosx得:
∫ R ( cos ⁡ x , sin ⁡ x ) d x = − ∫ R ( t , 1 − t 2 ) d t \int R(\cos x, \sin x) d x=-\int R(t, 1-t^2) d t R(cosx,sinx)dx=R(t,1t2)dt, 这样便进行了有理化。

②此时:
R ( cos ⁡ x , sin ⁡ x ) = R ( cos ⁡ x , sin ⁡ x ∗ tan ⁡ x ) = R 1 ( cos ⁡ x , tan ⁡ x ) R(\cos x, \sin x)=R(\cos x, \sin x*\tan x) =R_1(\cos x, \tan x) R(cosx,sinx)=R(cosx,sinxtanx)=R1(cosx,tanx)
则由此可得:
R ( − cos ⁡ x , − sin ⁡ x ) = R ( cos ⁡ x , sin ⁡ x ) = R 1 ( − cos ⁡ x , tan ⁡ x ) = R 1 ( cos ⁡ x , tan ⁡ x ) R(-\cos x,-\sin x)=R(\cos x, \sin x)=R_1(-\cos x, \tan x)=R_1(\cos x, \tan x) R(cosx,sinx)=R(cosx,sinx)=R1(cosx,tanx)=R1(cosx,tanx)
根据上式,我们可知 cos ⁡ x \cos x cosx是以偶数次方的形式出现,因此我们令:
R 1 ( cos ⁡ x , sin ⁡ x ) = R 2 ( cos ⁡ 2 x , sin ⁡ x ) R_1(\cos x, \sin x)=R_2(\cos^2 x, \sin x) R1(cosx,sinx)=R2(cos2x,sinx)
根据此进行积分可得:
∫ R ( cos ⁡ x , sin ⁡ x ) d x = ∫ R 1 ( cos ⁡ x , tan ⁡ x ) d x = ∫ R 2 ( cos ⁡ 2 x , sin ⁡ x ) d x \int R(\cos x, \sin x) d x=\int R_1(\cos x, \tan x) d x=\int R_2(\cos^2 x, \sin x) d x R(cosx,sinx)dx=R1(cosx,tanx)dx=R2(cos2x,sinx)dx

= − ∫ R 2 ( 1 1 + t 2 , t ) 1 + t 2 d t =-\int \frac{R_2(\frac{1}{1+t^2}, t)}{1+t^2} d t =1+t2R2(1+t21,t)dt

这样便进行了有理化。

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值