[JSOI2009]面试的考验 解题报告

本文详细分析了JSOI2009中一道关于面试考察的题目,重点讨论了如何处理特殊数据和优化算法。通过将询问区间按右端点排序,提出了使用线段树、位运算(BIT)和分块策略来解决,最终实现的时间复杂度为O(nlognloglogn+nlog2n+qlogn)或O(nlognlogn+nlogn+qn√)。此外,题目中需要注意答案不包含0的情况。
摘要由CSDN通过智能技术生成

考虑将询问区间按右端点排序。考虑x会与它前面产生贡献的点对,显然,如果 i<j<x,ai>aj>ax ,那么(i,x)就是无用的。也就是说我们要求位置 < x且权值大于 ax 的点和小于 ax 的点的两个类似笛卡尔树的序列的东西,而这个在随机数据中显然是 O(logn) 的。
但是问题是怎么求这个东西呢?一个比较脑残的想法是线段树!就是我们存一棵权值线段树,保存的是权值在一个范围内的编号最靠后的。这样我们每次取一个最靠后的。
然后这样常数巨大跑了10s。。
另一个比较简单的做法是考虑我们要生成大于的那个序列,我们生成到了y,那么实际上我们就是要找小于y的序列中第一个大于 ax

根据引用[1],dp[u][j]表示在u子树中选取恰好j个人时能获得的最大价值。而根据引用,该问题的时间复杂度为O(log2​104×nm)。 对于洛谷P2143 [JSOI2010] 巨额奖金问题,我们可以使用动态规划来解决。具体步骤如下: 1. 首先,我们需要构建一棵树来表示员工之间的关系。树的根节点表示公司的总经理,其他节点表示员工。每个节点都有一个权值,表示该员工的奖金金额。 2. 接下来,我们可以使用动态规划来计算每个节点的dp值。对于每个节点u,我们可以考虑两种情况: - 如果选择节点u,则dp[u][j] = dp[v][j-1] + value[u],其中v是u的子节点,value[u]表示节点u的奖金金额。 - 如果不选择节点u,则dp[u][j] = max(dp[v][j]),其中v是u的子节点。 3. 最后,我们可以通过遍历树的所有节点,计算出dp[u][j]的最大值,即为所求的巨额奖金。 下面是一个示例代码,演示了如何使用动态规划来解决洛谷P2143 [JSOI2010] 巨额奖金问题: ```python # 构建树的数据结构 class Node: def __init__(self, value): self.value = value self.children = [] # 动态规划求解最大奖金 def max_bonus(root, j): dp = [[0] * (j+1) for _ in range(len(root)+1)] def dfs(node): if not node: return for child in node.children: dfs(child) for k in range(j, 0, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-1] + node.value) for child in node.children: for k in range(j, 0, -1): for l in range(k-1, -1, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-l-1] + dp[child.value][l]) dfs(root) return dp[root.value][j] # 构建树 root = Node(1) root.children.append(Node(2)) root.children.append(Node(3)) root.children[0].children.append(Node(4)) root.children[0].children.append(Node(5)) root.children[1].children.append(Node(6)) # 求解最大奖金 j = 3 max_bonus_value = max_bonus(root, j) print("最大奖金为:", max_bonus_value) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值