题目:
给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。
为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。注意,pos 仅仅是用于标识环的情况,并不会作为参数传递到函数中。
说明:不允许修改给定的链表。
进阶:你是否可以使用 O(1) 空间解决此题?
示例 1:
输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:
输入:head = [1,2], pos = 0
输出:返回索引为 0 的链表节点
解释:链表中有一个环,其尾部连接到第一个节点。
示例 3:
输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。
题解:
```cpp
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
vector<ListNode*> nodevector;
ListNode* cur=head;
while(cur!=NULL){
if(find(nodevector.begin(),nodevector.end(),cur)==nodevector.end()){
nodevector.push_back(cur);
cur=cur->next;
}
else {
break;
}
}
return cur;
}
};
官方题解:
使用 O(1) 空间
我们使用两个指针,fast 与 slow。它们起始都位于链表的头部。
随后,slow 指针每次向后移动一个位置,而 fast 指针向后移动两个位置。如果链表中存在环,则fast 指针最终将再次与slow 指针在环中相遇。
如下图所示,设链表中环外部分的长度为 a。slow 指针进入环后,又走了 b 的距离与fast 相遇。此时,fast 指针已经走完了环的 n 圈,因此它走过的总距离为 a+n(b+c)+b=a+(n+1)b+nc
根据题意,任意时刻,fast 指针走过的距离都为 slow 指针的 2 倍。因此,我们有
a+(n+1)b+nc=2(a+b)⟹a=c+(n−1)(b+c)
有了 a=c+(n-1)(b+c)a=c+(n−1)(b+c) 的等量关系,我们会发现:从相遇点到入环点的距离加上 n-1 圈的环长,恰好等于从链表头部到入环点的距离。
因此,当发现 slow 与fast 相遇时,我们再额外使用一个指针ptr。起始,它指向链表头部;随后,它和slow 每次向后移动一个位置。最终,它们会在入环点相遇。
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
vector<ListNode*> nodevector;
ListNode* slow=head;
ListNode* fast=head;
if(head!=NULL&&head->next!=NULL){
slow=slow->next;
fast=fast->next->next;
}
else{
return NULL;
}
while(slow!=fast){
slow=slow->next;
if(fast!=NULL&&fast->next!=NULL){
fast=fast->next->next;
}
else{
return NULL;
}
}
ListNode* ptr=head;
while(ptr!=slow){
ptr=ptr->next;
slow=slow->next;
}
return ptr;
}
};