2021-12-13 139. 单词拆分(动态规划)

注:

题目:
给你一个字符串 s 和一个字符串列表 wordDict 作为字典,判定 s 是否可以由空格拆分为一个或多个在字典中出现的单词。

说明:拆分时可以重复使用字典中的单词。

示例 1:
输入: s = “leetcode”, wordDict = [“leet”, “code”]
输出: true
解释: 返回 true 因为 “leetcode” 可以被拆分成 “leet code”。
示例 2:
输入: s = “applepenapple”, wordDict = [“apple”, “pen”]
输出: true
解释: 返回 true 因为 “applepenapple” 可以被拆分成 “apple pen apple”。
注意你可以重复使用字典中的单词。
示例 3:
输入: s = “catsandog”, wordDict = [“cats”, “dog”, “sand”, “and”, “cat”]
输出: false

提示:
1 <= s.length <= 300
1 <= wordDict.length <= 1000
1 <= wordDict[i].length <= 20
s 和 wordDict[i] 仅有小写英文字母组成
wordDict 中的所有字符串 互不相同

题解:
s 串能否分解为单词表的单词(前 s.length 个字符的 s 串能否分解为单词表单词)。将大问题分解为规模小一点的子问题:

  • 前 i 个字符的子串,能否分解成单词
  • 剩余子串,是否为单个单词。

dp数组含义
dp[i]:长度为i的s[0:i-1]子串是否能拆分成单词。题目为求dp[s.length]是否为真
在这里插入图片描述

状态转移方程
类似的,我们用指针 j 去划分s[0:i] 子串,如下图:
在这里插入图片描述
s[0:i] 子串对应 dp[i+1] ,它是否为 true(s[0:i]能否 break),取决于两点:

  • 它的前缀子串 s[0:j-1] 的 dp[j],是否为 true。
  • 剩余子串 s[j:i],是否是单词表的单词。

初始化
base case 为dp[0] = true。即,长度为 0 的s[0:-1]能拆分成单词表单词。
当 j = 0 时(上图黄色前缀串为空串),s[0:i]的dp[i+1],取决于s[0:-1]的dp[0]和剩余子串s[0:i]是否是单个单词。

只有让dp[0]为真,dp[i+1]才会只取决于s[0:i]是否为单个单词,才能用上这个状态转移方程。

遍历顺序
先遍历i,之后j的取值为[0,i]

复杂度分析
时间复杂度:O(n2),其中 n 为字符串 s 的长度。我们一共有 O(n) 个状态需要计算,每次计算需要枚举 O(n) 个分割点,哈希表判断一个字符串是否出现在给定的字符串列表需要 O(1) 的时间,因此总时间复杂度为 O(n2)O。

空间复杂度:O(n) ,其中 n 为字符串 s 的长度。我们需要 O(n) 的空间存放 dp 值以及哈希表亦需要 O(n) 的空间复杂度,因此总空间复杂度为 O(n)。

class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        vector<bool> dp(s.size()+1,false);
        dp[0]=true;
        for(int i=1;i<=s.size();i++){
            for(int j=0;j<i;j++){
                if(find(wordDict.begin(),wordDict.end(),s.substr(j,i-j))!=wordDict.end()&&dp[j]==true){
                    dp[i]=true;
                }
            }
        }
        return dp[s.size()];
    }
};

j 不一定在[0,i]之间,也可以把 j 放在 i 的前面,即j的取值范围是[i,s.size()],代码如下所示:

class Solution {
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        vector<bool> dp(s.size()+1,false);
        dp[0]=true;
        for(int i=0;i<=s.size();i++){
            for(int j=i;j<=s.size();j++){
                if(find(wordDict.begin(),wordDict.end(),s.substr(i,j-i))!=wordDict.end()&&dp[i]==true){
                    dp[j]=true;
                }
            }
        }
        return dp[s.size()];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值