中国剩余定理

一.算法描述

 

情况1:mi两两互质

中国剩余定理是指解决求一次同余式组问题的方法,求一个最小的非负整数 x,满足 

x\equiv ai(mod \, \, \, mi) \: \: \: \: \: i \in [1.n]

其中m_{i}两两互质。

我们先回忆逆元的定义:对于任意a满足:

\frac{a}{b}\equiv ax(mod\: \: \: m)

这样,我们称xb的模m的乘法逆元,记作b^{-1}.

这样,我们可以得到:

\frac{a}{b}\equiv a*b^{-1}(mod\, \, \, m)

a\equiv a*b*b^{-1}(mod\, \, \, m)

b*b^{-1}\equiv 1(mod\, \, \, \, m)\cdot \cdot \cdot \cdot \cdot \cdot (*)

这样,我们就可以给出x的一个通式:

x= \sum_{i=1}^{n}a_{i}M_{i}M_{i}^{-1}

其中:

M_{i}=\frac{M}{m_{i}},M=\prod_{i=1}^{n}=m_{1}m_{2}\cdot \cdot \cdot m_{n}

下给出证明:

我们只需要证明,对于任意的i,会满足x\equiv ai(mod \, \, \, mi)即可。

而对于x中的任意一项j:

1.若i=j,那么a_{j}M_{j}M_{j}^{-1}=a_{i}M_{i}M_{i}^{-1},而M_{i}M_{i}^{-1}\equiv 1(mod\, \, \, m_{i}),所以:

       a_{j}M_{j}M_{j}^{-1}\equiv a_{i}\left ( mod\, \, \, m_{i} \right )(i=j)

2.若i\neq j,那么对于a_{j}M_{j}M_{j}^{-1}中,由于M_{j}=\frac{M}{m_{j}},这样M一定是包括了m_{i}的,所以:

a_{j}M_{j}M_{j}^{-1}\equiv 0\left ( mod\, \, \, m_{i} \right )(i\neq j)

综上,对于任意的ix\equiv ai(mod \, \, \, mi)

下来,我们需要去求出M_{i}关于m_{i}的逆元M_{i}^{-1}

事实上,在前面扩展欧几里得算法中,我们已经可以求解:

ax\equiv b(mod\, \, \, m)

那我们现在要求M_{i}*M_{i}^{-1}\equiv 1(mod\, \, \, \, m_{i})而已:

M_{i}M_{i}^{-1}=km_{i}+1\rightarrow M_{i}M_{i}^{-1}+km_{i}=1(mod\, \, \, m_{i})

但是我们要注意M_{i}m_{i}是互质的,因而gcb(M_{i},m_{i})=1.

这样我们就可以用扩展欧几里得算法求出M_{i}^{-1}

情况二:mi不能保证两两互质

在mi不能保证两两互质的情况下,那么中国剩余定理就不能使用了,因为你不能保证每一个M_{i}都存在逆元。

这时候我们就采用另一种方法:

首先我们考虑前面的两个式子:

x\, \, \, mod\, \, \,m _{1}=a_{1}

x\, \, \, mod\, \, \,m _{2}=a_{2}

那我们可以把这两个式子写成:

x=k_{1}m_{1}+a_{1}

x=k_{2}m_{2}+a_{2}

这样:

k_{1}m_{1}+a_{1}=k_{2}m_{2}+a_{2}

k_{1}m_{1}-k_{2}m_{2}=a_{2}-a_{1}

同样的,我们令d=gcb(a_{1},a_{2}),由于a_{1},a_{2}都是d的倍数,那么上式有解等价于m_{2}-m_{1}可以整除于d

这样,我们可以写出x的一个通解:

x=(k_{1}+k\frac{m_{2}}{d})m_{1}+a_{1}\cdot \cdot \cdot \cdot \cdot \cdot (*)

为什么捏?这是因为

x\, \, \, mod\, \, \, m_{1}=a_{1}

x\, \, \, mod\, \, \, m_{2}=(k_{1}m_{1}+a_{1})\, \, \, mod\, \, \, m_{2}=(k_{2}m_{2}+a_{2})\, \, \, mod\, \, \, m_{2}=a_{2}

这样,我们将(*)式整理一下:

x=m_{1}k_{1}+a_{1}+k\frac{m_{1}m_{2}}{d}=x+k\frac{m_{1}m_{2}}{d}

这样,我们就把两个式子合并成了一个,其中\frac{m_{1}m_{2}}{d}=[m_{1},m_{2}],表示a_{1},a_{2}的最小公倍数。

因而,在新的式子中,把x_{0}看成新的式子的a\frac{m_{1}m_{2}}{d}看成是m,即:

x\equiv x_{0}(mod\, \, \, \, \frac{m_{1}m_{2}}{d})

无解的条件即为:(a_{2}-a_{1})%gcb(m_{1},m_{2})\neq 0

基本步骤解决了,下面有几个问题需要讨论:

 k1=k1*(a2-a1)/d;
 k1 = (k1 % (m2/d) + m2/d) % (m2/d);

这里其实k1有可能是负数的(因为一般扩展欧几里得算法不止一个解叭),那我觉得如果k1是负数的话,我们的目的是让m1k1对m1m2取余,这样也就是k对m2/d取余,由于k有可能是负数,一般步骤就是先对x取余,然后加上x,再对x取余。

最后在得到x的时候,同样让a对m取余,以防x是负数,加上:

 x = (a1 % m1 + m1) % m1;

二.具体代码

#include<iostream>
using namespace std;
typedef pair<long,long> II;
II exgcb(long a,long b){
    if(b==0) return {1,0};
    else{
        II tmp=exgcb(b,a%b);
        return {tmp.second,tmp.first-a/b*(tmp.second)};
    }
}
int main(){
    int n;
    cin>>n;
    long long  a1,m1;
    cin>>m1>>a1;
    bool flag=true;
    long long x=0;
    for(int i=1;i<=n-1;i++){
        long long a2,m2;
        cin>>m2>>a2;
        II tmp=exgcb(m1,m2);
        long long d=m1*tmp.first+m2*tmp.second;
        if((a2-a1)%d){//d有可能是负的
            flag=false;
            break;
        }
        else{
            long long k1=tmp.first;
            k1=k1*(a2-a1)/d;
            k1 = (k1 % (m2/d) + m2/d) % (m2/d);
            x=m1*k1+a1;
            a1=x%(m1/d*m2);
            m1=m1/d*m2;
        }
    }
    if(flag){
        x = (a1 % m1 + m1) % m1;
        cout<<x;
    }
    else cout<<-1;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
#include #include using namespace std; typedef int LL; typedef pair PLL; LL inv(LL t, LL p) {//求t关于p的逆元 if (t >= p) t = t%p; return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p; } LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } PLL linear(LL A[], LL B[], LL M[], int n) {//求解A[i]x = B[i] (mod M[i]),总共n个线性方程组 LL x = 0, m = 1; for (int i = 0; i < n; i++) { LL a = A[i] * m, b = B[i] - A[i] * x, d =gcd(M[i], a); if (b % d != 0) return PLL(0, -1);//答案不存在,返回-1 LL t = b / d * inv(a / d, M[i] / d) % (M[i] / d); x = x + m*t; m *= M[i] / d; } x = (x % m + m) % m; return PLL(x, m);//返回的x就是答案,m是最后的lcm值 } int main() { int n; scanf_s("%d", &n); LL a[2017], b[2017], m[2017]; for (int i = 0; i<n; i++) { scanf_s("%d%d%d", &a[i], &b[i], &m[i]); } PLL pa = linear(a, b, m, n); printf("%lld\n", pa.first); } 设计思路: 有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?” 解这题,先构造一个答案 5*7*inv(5*7, 3) % 3 = 1 3*7*inv(3*7, 5) % 5 = 1 3*5*inv(3*5, 7) % 7 = 1 然后两边同乘你需要的数 2 * 5*7*inv(5*7, 3) % 3 = 2 3 * 3*7*inv(3*7, 5) % 5 = 3 2 * 3*5*inv(3*5, 7) % 7 = 2 令 a = 2 * 5*7*inv(5*7, 3) b = 3 * 3*7*inv(3*7, 5) c = 2 * 3*5*inv(3*5, 7) 那么 a % 3 = 2 b % 5 = 3 c % 7 = 2 其实答案就是a+b+c 因为 a%5 = a%7 = 0 因为a是5的倍数,也是7的倍数 b%3 = b%7 = 0 因为b是3的倍数,也是7的倍数 c%3 = c%5 = 0 因为c是3的倍数,也是5的倍数 所以 (a + b + c) % 3 = (a % 3) + (b % 3) + (c % 3) = 2 + 0 + 0 = 2 (a + b + c) % 5 = (a % 5) + (b % 5) + (c % 5) = 0 + 3 + 0 = 3 (a + b + c) % 7 = (a % 7) + (b % 7) + (c % 7) = 0 + 0 + 2 = 2 答案a+b+c完全满足题意 但是答案,不只一个,有无穷个,每相隔105就是一个答案(105 = 3 * 5 * 7) a=2*5*7*2=140 b=3*3*7*1=63 c=2*3*5*1=30 140+63+30=233 2335 = 23 如果题目问你最小的那个答案,那就是23了。 当 1*x=2(%3) 1*x=3(%5) 1*x=2(%7) 输入: 3 1 2 3 1 3 5 1 2 7 输出: 23

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值