开始
写在开头
在学习vanna和ollama的过程中写下本文,谨以记录,别无他意。
技术简介
本文主要介绍了如何在Windows本地安装ollama的大语言模型,并将该模型用在vanna上去做text to sql。
Ollama安装
1.进入官网链接:https://ollama.com/
2.点击download,选择Windows版本直接下载即可(理论上来说,是要挂vpn的,不然下载会很慢)
3.下载之后,直接安装就可以了。(理论上来说,环境变量会自动添加,如果后面用不了,大概率是环境变量没配置,自行加上就行了)。
注释
:Ollama并不是大模型,它是一个开源的框架,可以理解为一个为大模型服务的工具,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。
模型下载
关于大模型,可以根据自己的需求和电脑的配置进行选择。
鉴于本人笔记本电脑内存不多,选择的阿里的qwen2-7b,因为ollama是支持从GGUF导入大模型的。
1.从官网下载:https://modelscope.cn/models/qwen/Qwen2-7B-Instruct-GGUF/files
qwen2-7b有多个不同的版本,区别就是模型性能和精度不一样。其中q
值后面的数字越大,对应的模型精度就越高,但是占用的内存也就越大。还是那句话,根据自己的需求和电脑配置自行选择。
2.模型的相关配置
(因为只是做测试,本文下载的是qwen2-7b-instruct-q2_k.gguf)
下载完成之后,在打算存储模型的地方新建一个文件夹,例如:qwen,然后把模型文件放到这个文件夹下就可以了。
之后,在qwen文件夹下,新建一个文件:Modelfile,并在文件中写入以下内容,./
后对应的就是下载的模型的文件名
FROM ./qwen2-7b-instruct-q2_k.gguf
最后效果就是这样
启动模型
1.在qwen文件夹直接进入cmd命令行
2.执行创建命令
ollama create Qwen2-7B -f ./Modelfile
如果成功执行,应该会显示transferring model data,like this
这里应该不会运行太久,如果很长时间没反应,直接enter一下看看。最终执行成功的结果会显示success,like this
3.启动
ollama run Qwen2-7B
成功之后,like this
到此,模型就行安装完成了,可以通过ollama list命令查看当前有哪些模型。
Vanna简介
理论上来说,都点击这篇文章了,想必是知道Text to Sql的,就不在这里解释了,Vanna就是一个开源的Python RAG(检索增强生成)框架,主要用于SQL生成的。其实Vanna的官方文档写的非常详细并且易懂。官网链接:https://vanna.ai/docs/
环境搭建
1.创建python项目和虚拟环境
都学习大模型了,基本的python操作就不赘述了,自己创建就行了(仅供参考
:本文使用的pycharm 2024以及python 3.12的虚拟环境)
注释
:这里建议创建jupyter项目,操作起来会方便很多
2.安装vanna的相关包
这个在vanna的官方快速操作文档中有介绍,https://vanna.ai/docs/mysql-ollama-chromadb/,选择使用的大模型和向量库,官方会生成需要安装哪些包,然后直接pip安装就行了。like this
本文肯定是选择的Ollama咯,至于向量库,因为都是安装库直接使用,选择的是ChromaDB,也可以用vanna官方推荐的第一个,这个没有太多要求,自行选择。
因为是要做text to SQL,下面还会选择一个数据库,这个也根据需求选择就行了,之后会生成相应的测试代码,拿来直接用就行
安装相关库
%pip install 'vanna[chromadb,ollama,mysql]'
建议加个镜像,会快一点
%pip install 'vanna[chromadb,ollama,mysql]' -i https://pypi.tuna.tsinghua.edu.cn/simple
实操部分
1.模型连接
按照vanna官网的实例代码,like this