不二人生
刀光剑影江湖情,摧枯拉朽浪滔滔。功名利禄拂衣去,山高水远路迢迢。一个上得了厅堂下得了厨房、左手写诗右手写词的男人
展开
-
大模型——快速打造数据分析应用
整体的功能大致如下,后面我们把Text2SQL 的功能加入进来,也把更多的业务元数据加入进来,后面用户就可以提出更多切合业务的需求了。原创 2025-03-27 18:10:32 · 2 阅读 · 0 评论 -
大模型——提升自然语言转换为 SQL 查询(NL2SQL)准确度的探索-- LLaMA-Factory 蒸馏 DeepSeek 模型的方法介绍
提升自然语言转换为 SQL 查询可能的3个方向有:1. Prompt 工程,以用户角色提供充足的上下文信息;2. 建设知识库,以系统角色提供上下文信息;3. 增强模型的NL2SQL能力。在第3个方向上,我们发现:本地部署的 deepseek-r1:32b 的 NL2SQL 的准确度与满血版的在线 deepseek-r1:671b 存在较大差距。这说明模型能力会影响 NL2SQL 准确性。本文通过蒸馏 DeepSeek 模型,探索:通过提升模型专业能力,能够提高 NL2SQL 的准确度。原创 2025-03-27 17:11:55 · 6 阅读 · 0 评论 -
大模型——带你快速上手WrenAI,一款支持多语言的AI数据助手,从SQL生成到可视化全流程支持
WrenAI是一个 AI 驱动的端到端数据交互工具。它通过自然语言处理(NLP)技术,将用户的自然语言问题转化为精确的 SQL 查询,并生成相应的数据可视化和报表。这种直观的交互方式,使得无论是数据科学家还是业务人员,都能在不需要深入 SQL 技能的情况下,快速从数据中获取洞察。Wren AI 由三个核心服务组成:Wren UI、Wren AI服务、Wren引擎。WrenAI通过将自然语言处理与数据交互技术结合,为数据团队和企业提供了一个端到端的智能数据处理平台。原创 2025-03-27 09:11:09 · 98 阅读 · 0 评论 -
大模型——持续霸榜Github 的开源SQL AI代理 Wren AI
通过本文的介绍,相信你已经对WrenAI有了更深入的了解。无论是数据分析师、产品经理还是业务决策者,WrenAI都能成为你数据工作中的得力助手。原创 2025-03-27 09:08:37 · 135 阅读 · 0 评论 -
大模型——AI驱动的README生成器 效率翻倍
Post-Commit钩子是每个git提交之后运行的脚本。生成README.md文件。使用Llama 3模型对项目进行全面描述。自动提交README.md文件,使用标志机制避免无限循环。原创 2025-03-26 07:32:13 · 54 阅读 · 0 评论 -
大模型——最全梳理 一文搞懂RAG技术的5种范式!
高级 RAG 引入了具体的改进措施,以克服 Naive RAG 的局限性。为了提高检索质量,它采用了检索前和检索后策略。为了解决索引问题,高级 RAG 通过使用滑动窗口方法、细粒度分割和元数据的整合,改进了索引技术。此外,它还采用了多种优化方法来简化检索过程。模块化 RAG 架构超越了前两种 RAG 范式,具有更强的适应性和多功能性。它采用了多种策略来改进其组件,例如为相似性搜索添加搜索模块,以及通过微调完善检索器。为应对特定挑战,还引入了重组 RAG 模块和重排 RAG 管道等创新方法。原创 2025-03-26 07:31:33 · 105 阅读 · 0 评论 -
大模型——Text2SQL 的实现探究
*Spider、WikiSQL和CHASE等主流Text2SQL数据集提供****自然语言查询与SQL查询对应数据**Text2SQL数据集是指一类专门用于训练Text2SQL(文本到SQL)模型的数据集合。**,主要包含****数据集收集、数据预处理、模型选择与构建和微调权重***基于开箱即用的Text2SQL Agent结合业务整合到应用***通过自然语言描述完成复杂数据库的查询操作****开源的AI原生数据应用开发框架****是一个利用LLMs实现****主要包括两种:**原创 2025-03-25 20:20:38 · 400 阅读 · 0 评论 -
大模型——极简LangChain智能体开发入门指南
在人工智能快速发展的时代,大型语言模型(LLM)如 OpenAI 的 GPT 系列,已成为生成自然语言文本的核心技术。然而,将这些模型应用于实际应用(如聊天机器人或虚拟助手)时,开发者常常面临提示管理、外部数据集成和上下文保持的挑战。LangChain 作为一个开源框架,旨在简化这些复杂性,提供模块化工具,帮助开发者高效构建 LLM 驱动的应用。LangChain 于 2022 年 10 月由 Harrison Chase 在 Robust Intelligence 启动,迅速获得社区支持,GitHub 上原创 2025-03-25 20:15:44 · 183 阅读 · 0 评论 -
大模型—— 走进Langchain:全面解析
Langchain是一个用于开发由大型语言模型(LLM)支持的应用程序的框架。它提供了一系列的工具、接口和组件,旨在简化和加速LLM应用程序的开发过程。通过Langchain,开发者可以更方便地将LLM与外部数据源、工具以及其他组件进行集成,构建出功能丰富、复杂的应用程序。Langchain的技术架构是一个分层的、模块化的架构。从底层到高层,它包括了数据层、组件层、链、Agents 以及应用层。数据层负责与各种外部数据源进行交互,获取和存储数据;原创 2025-03-25 20:12:41 · 46 阅读 · 0 评论 -
DeepSeek掘金——DeepSeek-R1图形界面Agent指南
ChatGPT Operator 是 OpenAI 提供的一项高级功能,允许用户创建能够执行复杂任务(例如推理、Web 自动化和多步骤问题解决)的高级 AI 代理。例如,ChatGPT Operator 在这个视频。原创 2025-03-03 20:30:02 · 3375 阅读 · 0 评论 -
大模型——LangManus:基于LangChain的开源多智能体助手
它的主要职责是过滤掉不必要的闲聊内容,例如简单的问候语、无意义的对话、以及涉及敏感话题(如政治、色情等)的请求。在过去,如果想自己实现一个 ReAct 风格的大语言模型应用,需要自己编写、调试 Prompt,设计工具调用协议,手工编排流程,如果要想做一个支持流式输出的前后端应用更是难上加难。我们的 LangManus 开源项目中也采用了上述基于 Multi-Agent Supervisor 和 ReAct 的架构,包含了多个智能体,并且已经集成了多种工具,使 AI 能够执行各种研究任务。原创 2025-03-25 08:57:47 · 317 阅读 · 0 评论 -
大模型——数万开发者推荐的LangGraph,Swarm让效率暴涨300%!
综上,LangGraph Multi-Agent Swarm适用于需要高度灵活性、复杂任务分解、持续交互和多步骤操作的场景,特别是在对话代理、专业报告撰写、代码生成等领域具有显著优势。LangGraph Multi-Agent Swarm 是使用 LangGraph 创建 swarm 风格的多代理系统。系统会记住最后一个处于活动状态的座席,确保在后续交互中,与该座席的对话恢复。SQL代理和研究特化多代理(STORM)对话代理和长运行多步骤LLM应用。智能代理检索与生成(RAG)系统。多智能体系统(MAS)原创 2025-03-25 07:52:47 · 136 阅读 · 0 评论 -
DeepSeek掘金——DeepSeek-R1微调指南
在这篇博文中,我们将逐步指导你在消费级 GPU 上使用 LoRA(低秩自适应)和 Unsloth 对 DeepSeek-R1 进行微调。微调像 DeepSeek-R1 这样的大型 AI 模型可能需要大量资源,但使用正确的工具,可以在消费级硬件上进行有效训练。让我们探索如何使用 LoRA(低秩自适应)和 Unsloth 优化 DeepSeek-R1 微调,从而实现更快、更具成本效益的训练。DeepSeek 的最新 R1 模型正在设定推理性能的新基准,可与专有模型相媲美,同时保持开源。原创 2025-03-03 20:31:37 · 3369 阅读 · 0 评论 -
DeepSeek掘金——Google Colab运行DeepSeek R1
最近我在测试本地运行DeepSeek R1,但CPU温度太高了。我的朋友说你为什么不使用 Google Colab?因为它为你提供了一个 免费GPU最近,我尝试在没有任何 GPU 的情况下在本地运行使用 Qwen 7B 蒸馏的 DeepSeek R1。我的所有 CPU 核心和线程都被推到了极限,最高温度达到 90 摄氏度(Ryzen 5 7600)。我的朋友说你为什么不使用 Google Colab?因为它为你提供了一个 GPU(免费使用 3-4 小时)。原创 2025-03-03 20:32:47 · 3122 阅读 · 0 评论 -
DeepSeek掘金——10个最佳AI代理开发框架 (2025)
本文介绍精心挑选的2025年最优秀的10个AI代理框架,它们以其多功能性、易用性和处理现实世界挑战的能力而脱颖而出。2025年的AI领域充满了创新的框架,旨在简化智能自主系统的开发。这些框架使开发人员能够构建、部署和管理能够在最小的人工干预下执行复杂任务的AI代理。以下是一个精心挑选的2025年最优秀的10个AI代理框架列表,它们以其多功能性、易用性和处理现实世界挑战的能力而脱颖而出。原创 2025-03-03 20:35:47 · 3543 阅读 · 0 评论 -
DeepSeek掘金——vLLM和ollama综合对比
本文比较vllm和ollama在不同场景中的表现。我们将重点关注:资源利用率和效率、部署和维护的简易性、具体用例和建议、安全和生产准备、文档。欢迎来到我们深入研究 LLM 推理框架的最后一部分!在第一部分和第二部分中,我们分别探讨了 Ollama 和 vLLM,了解了它们的架构、功能和基本性能特征。现在到了决定性的一轮:面对面的比较,以帮助您根据特定需求选择合适的框架。这次比较并不是要宣布绝对的赢家——而是要了解哪种框架在不同场景中表现出色。让我们深入研究数据,看看我们的测试揭示了什么!🚀。原创 2025-03-03 20:38:38 · 3253 阅读 · 0 评论 -
大模型——字节跳动开源AI Agent框架Agent TARS:智能化自动化的新利器
字节跳动开源的Agent TARS框架以其多模态能力、全面的工具支持和灵活的工作流程编排,为用户和开发者提供了一个高效、智能的自动化解决方案。无论是简化日常任务还是加速复杂项目,Agent TARS都展现出了巨大的潜力。对于有兴趣探索AI Agent的个人或团队来说,Agent TARS无疑是一个值得尝试的工具。未来,随着技术和社区的共同努力,Agent TARS或将成为AI自动化领域的重要里程碑。原创 2025-03-24 13:49:36 · 499 阅读 · 0 评论 -
大模型——Agent TARS:一键让AI托管电脑!字节开源PC端多模态AI助手,无缝集成浏览器与系统操作
Agent TARS 是一款开源的多模态AI助手,旨在通过视觉解析网页并无缝集成命令行和文件系统,帮助用户高效完成复杂任务。Agent TARS 的核心在于其强大的代理框架,能够通过事件流与UI无缝连接,实现任务的自动化执行。如果需要调整任务方向,可以在顶部的特殊输入框中输入你的想法并按下回车键。Agent TARS 将向远程服务器发送请求,上传 HTML 文件,并生成一个可分享的 URL。,Agent TARS 将你的任务打包为一个 HTML 文件,方便你与他人分享。页面下载最新版本的桌面程序包。原创 2025-03-24 13:48:11 · 280 阅读 · 0 评论 -
大模型——基于腾讯云大模型知识引擎的DeepSeek满血版模型搭建【法律大模型专家模型搭建实战】
大模型知识引擎(LLM KnowledgeEngine),是面向企业客户及合作伙伴的,基于大语言模型的知识应用构建平台,结合企业专属数据,提供知识问答等应用范式,更快更高效地完成大模型应用的构建,推动大语言模型在企业服务场景的应用落地。腾讯云大模型知识引擎结合企业专属数据,提供知识问答等应用范式及原子能力接口服务,能够更快更高效地完成大模型应用的构建,推动大语言模型在云通信与企业服务场景的应用落地。原创 2025-03-24 07:50:36 · 182 阅读 · 0 评论 -
大模型——Deepseek 实战全攻略,一文带你玩转Deepseek
Deepseek 是杭州深度求索人工智能基础技术研究有限公司旗下的一款基于 Transformer架构的大型语言模型。它在大规模无监督数据上进行预训练,学习到了丰富的语言知识和模式,能够生成高质量的文本、回答问题、进行文本摘要等多种自然语言处理任务。强大的语言理解能力:能够准确理解文本的语义和语境,处理复杂的语言结构和歧义。高效的生成能力:可以快速生成连贯、有逻辑的文本,满足不同场景下的需求。可扩展性:支持在不同的硬件平台上进行部署,并且可以根据具体任务进行微调,以适应特定的应用场景。原创 2025-03-24 07:46:20 · 154 阅读 · 0 评论 -
大模型——让Word插上AI的翅膀:如何把DeepSeek装进Word
1. 回到Word,点击“文件”->“选项”->“自定义功能区”。2. 在右侧的“主选项卡”中,右键点击“开发工具”,选择“添加新组”。3. 将新组重命名为“DeepSeek”,并选择一个你喜欢的图标。4. 在左侧的命令列表中,选择“宏”,找到我们刚刚创建的“CallDeepSeek”宏,将其添加到“DS生成”组中。5. 最后,将这个按钮重命名为“DeepSeek V3”。原创 2025-03-21 09:05:59 · 720 阅读 · 0 评论 -
大模型——智能模型新篇章:RAG + Fine-Tuning 混合增强策略
RAG和特定领域微调的结合,为提升大型语言模型的外部知识和领域专长提供了一种强大的解决方案。通过发挥这两种方法的优势,研究人员已经开发出了使大语言模型能够基于事实信息进行推理、适应专业领域,并生成更可解释和可信输出的方法。随着RAG和微调之间的联合作用不断被探索,我们可以预期未来的语言模型将不仅拥有广泛的知识,还能展现出深入的领域专长、推理能力和坚实的事实基础——这是迈向更知识渊博和可靠的AI系统的重要一步。原创 2025-03-21 09:04:50 · 510 阅读 · 0 评论 -
大模型——Deepseek 万能提问公式:高效获取精准答案
通过以上万能提问公式,你可以让 Deepseek 或其他 AI 工具更高效地理解你的需求,并提供精准、实用的答案。原创 2025-03-21 09:03:20 · 406 阅读 · 0 评论 -
大模型——Linly-Dubbing 本地部署教程:一键实现视频多语言 AI 配音等强大功能
是一个智能视频多语言 AI 配音和翻译工具,它融合了 YouDub-webui 的灵感,并在此基础上进行了拓展和优化。我们致力于提供更加多样化和高质量的配音选择,通过集成 Linly-Talker 的数字人对口型技术,为用户带来更加自然的多语言视频体验。通过整合最新的 AI 技术,在多语言配音的自然性和准确性方面达到了新的高度,适用于国际教育、全球娱乐内容本地化等多种场景,帮助团队将优质内容传播到全球各地。原创 2025-03-20 09:10:44 · 639 阅读 · 0 评论 -
大模型——RAG+AI工作流+Agent:LLM框架该如何选择,全面对比MaxKB、Dify、FastGPT、RagFlow、Anything-LLM,以及更多推荐
1. `开箱即用`:支持直接上传文档、自动爬取在线文档,支持文本自动拆分、向量化、RAG(检索增强生成),智能问答交互体验好;2. `无缝嵌入`:支持零编码快速嵌入到第三方业务系统,让已有系统快速拥有智能问答能力,提高用户满意度;3. `灵活编排`:内置强大的工作流引擎,支持编排 AI 工作流程,满足复杂业务场景下的需求;原创 2025-03-20 09:09:24 · 925 阅读 · 0 评论 -
大模型——Ollama-OCR 简明教程
Llama 3.2-Vision 是一个多模态大型语言模型,有 11B 和 90B 两种大小,能够处理文本和图像输入以生成文本输出。该模型在视觉识别、图像推理、图像描述和回答与图像相关的问题方面表现出色,在多个行业基准测试中优于现有的开源和闭源多模态模型。在本文中,我将介绍如何调用由 Ollama 运行的 Llama 3.2-Vision 11B 建模服务并使用实现图像文本识别 (OCR) 功能。原创 2025-03-19 07:54:12 · 1014 阅读 · 0 评论 -
大模型——Pgvector:如何轻松将PostgreSQL转变为矢量数据库
pgvector是一款PostgreSQL扩展,专门用于存储矢量并在这些矢量中执行相似搜索。与传统的PostgreSQL数据类型不同,pgvector针对高维数据进行了优化,非常适合机器学习模型、图像识别和自然语言处理任务。pgvector的核心特性:高效的矢量存储:pgvector在不丢失数据完整性的情况下压缩高维矢量。这是一件大事,因为高维数据可能会成为存储的噩梦。多种距离度量:无论你使用欧几里德距离、余弦相似度还是曼哈顿距离,pgvector都能应对。原创 2025-03-19 07:53:20 · 684 阅读 · 0 评论 -
大模型——用Deepseek-R1蒸馏自己的模型
为了举例说明,我希望模型能够遍历我的数据集,理解每个意见的情感,并从-5到5对每个意见进行排名,并将其添加到新的列中。总之,上述指南为你提供了一个简单的方法来创建最新精馏Deepseek-R1模型的本地私有实例,并展示了如何创建自定义提示以在自己的数据上以可扩展的方式运行。通过使用pandas的apply()函数,我可以使用上述指定的函数针对数据框中的所有行运行模型,并结合辅助系统提示来帮助指导模型产生正确的输出。确保指定正确的模型。只需在>>>后面直接写入你的提示,就可以开始与你的模型的本地版本互动。原创 2025-03-18 22:10:30 · 1053 阅读 · 0 评论 -
大模型——用DeepSeek-R1构建生成式AI应用
在这篇文章中,我们将使用DeepSeek开源模型构建一个生成式AI应用程序,该模型能够根据我们的需求生成代码和其他内容。在这篇文章中,我们将使用DeepSeek开源模型构建一个生成式AI应用程序,该模型能够根据我们的需求生成代码和其他内容。在构建此应用程序时,我们将使用Langchain(AI工作流框架)、Ollama和DeepSeek-R1等开源工具。为什么我们使用DeepSeek-R1、Langchain和Ollama?原创 2025-03-18 22:09:38 · 795 阅读 · 0 评论 -
大模型——Maxun无代码爬虫平台
Maxun是一个开源的无代码Web数据提取平台, 可以让你在 2 分钟内训练机器人并自动抓取网络数据。Maxun是一个开源的无代码Web数据提取平台, 可以让你在 2 分钟内训练机器人并自动抓取网络数据。Web 数据提取再简单不过了!原创 2025-03-17 20:46:53 · 1187 阅读 · 0 评论 -
大模型——LLM增强的Web抓取
大型语言模型(LLMs)是新一代的计算机程序,它们通过阅读和分析大量的文本数据来学习。在这个时代,LLMs 具备了以人类语言书写的能力,使得它们成为处理语言和理解人类语言的高效代理。这种出色的能力在需要文本上下文的重要情况下表现得尤为突出。原创 2025-03-17 20:44:29 · 917 阅读 · 0 评论 -
大模型——Ollama简明教程
在这篇文章中,我们将了解如何使用 Ollama、如何在 Ollama 中创建自己的模型 以及如何使用 Ollama 构建聊天机器人。这是深入研究 Ollama 的第一部分,以及我所学到的有关本地 LLM 的知识以及如何将它们用于基于推理的应用程序。在这篇文章中,你将了解——原创 2025-03-15 09:16:29 · 1298 阅读 · 0 评论 -
大模型——OpenAI深夜发布全新Agent工具:两大杀器登场,感觉可以手搓Manus了
如果你想构建更复杂的agent系统,Agents SDK绝对是你的不二之选!它让多智能体workflow的编排变得前所未有的简单。支持多种文件格式,快速检索海量文档,企业知识库的福音!价格还很亲民,首GB存储免费!基于ChatGPT同款搜索引擎,准确率高达90%!旨在彻底简化agent开发流程,让开发者和企业都能轻松构建。网页搜索、文件搜索、电脑控制三大工具直接集成,无需额外开发!刚刚OpenAI举行了一个19分钟的线上发布会,推出。,把OpenAI强大的模型和各种实用工具无缝衔接。原创 2025-03-15 09:15:41 · 1352 阅读 · 0 评论 -
大模型——Qwen2-VL OCR能力微调与量化
关于使用自己的数据专门为 LLM 训练创建自定义训练数据集的资源很少。在花费大量时间完成此过程后,我决定在此博客中提供全面、深入的指南。我主要使用 Linux 对模型进行微调、量化和推理,因为尚未提供稳定的 Windows 支持。但是,如果我在 Windows 上成功构建它,我会更新此博客。我首先收集了大约 3,000 张图像并对其进行标记。我的主要目标是从车辆铭牌图像中提取型号、车辆序列号和发动机号,从底盘图像中提取底盘号。以下是示例图像及其 OCR 标签格式。原创 2025-03-14 13:33:24 · 1653 阅读 · 0 评论 -
大模型——Qwen2.5-Coder本地运行指南
本综合指南探讨了如何在本地系统上有效部署和利用 Qwen2.5-Coder,特别关注与 Ollama 的集成以简化部署。Qwen2.5-Coder 代表了以代码为中心的语言模型的重大进步,将最先进的性能与实用性相结合。本综合指南探讨了如何在本地系统上有效部署和利用 Qwen2.5-Coder,特别关注与 Ollama 的集成以简化部署。原创 2025-03-14 13:32:23 · 1439 阅读 · 0 评论 -
大模型——RAG系统实战
本文指导读者使用四种关键技术构建 RAG 系统:Llama3、Ollama、DSPy 和 Milvus。到目前为止,你可能已经熟悉了检索增强生成 (RAG) 系统,这是 NLP 应用程序中使用的框架。在本文中,我们旨在指导读者使用四种关键技术构建 RAG 系统:Llama3、Ollama、DSPy 和 Milvus。首先,让我们了解它们是什么。原创 2025-03-14 13:31:33 · 1361 阅读 · 0 评论 -
大模型——Spring AI 和 Open AI 入门
本文介绍了如何使用 Spring AI 与 OpenAI 交互,详细介绍了如何使用ChatClient与 Open AI 互动、如何使用为ChatClient提供一组预定义的提示以及如何使用解析响应为所需要的格式。原创 2025-03-14 13:30:49 · 1388 阅读 · 0 评论 -
大模型——Spring AI Advisor 指南
当然,我们可以根据需求实现自定义的Advisor。创建一个@Override@Override@Override如上,我们实现了接口,并在调用前后添加了日志逻辑。此外,getOrder()方法返回了Integer最大值,因此该adviser是链中的最后一个。如上,创建并将其附加到提示。执行日志如下,可以看到,我们的Advisor成功记录了提示文本和聊天回复。原创 2025-03-13 09:18:13 · 1762 阅读 · 0 评论 -
大模型——Spring AI 简介
本文介绍了 Spring AI 项目及其在 REST API 方面的功能,它为生成式 AI 集成到 Spring Boot 应用中提供了一个可靠的接口。在撰写本文时,仍在积极开发中(可以访问快照版本)。本文介绍了与 Spring AI 的基本集成和高级集成,包括AiClientAiResponse和以及异常处理。原创 2025-03-13 09:17:14 · 1657 阅读 · 0 评论 -
大模型——用LM Studio本地运行大模型
LM Studio 是一款流行的 GUI 应用程序,它允许具有基本计算机知识的用户在其 Linux 机器上轻松下载、安装和运行大型语言模型 (LLM)。LM Studio 是一款流行的 GUI 应用程序,它允许具有基本计算机知识的用户在其 Linux 机器上轻松下载、安装和运行大型语言模型 (LLM)。可以使用 LM Studio 聊天界面轻松安装、设置和访问流行的 LLM 模型,例如 Llama 3、Phi3、Falcon、Mistral、StarCoder、Gemma 等。原创 2025-03-12 09:34:06 · 2239 阅读 · 0 评论