递归和动态规划的转换

本文探讨了递归和动态规划的关系,指出在能够转化为动态规划的递归算法中,存在大量重复计算。通过记忆化搜索,将递归过程中的重复计算存储起来,可以显著减少运算次数,与动态规划的时间复杂度相当。递归优化的关键在于识别并避免重复情况,而剪枝则是消除不可能的分支,两者并不相同。
摘要由CSDN通过智能技术生成

最近重新研读了下《挑战程序设计》对动态规划和递归的关系有了点新的理解,之前的理解过于机械化,单纯的以为根据递推公式可以直接写DP代码。

通俗的来说,

递归 是  考虑所有的情况,一般使用搜索(DFS /BFS)来实现。

在那些 可以转换为 DP 的递归算法中, 必定有很多重复的情况。

比如要做以下算术

1 + 1

1 + 1 + 1

2 + 1 + 1

3 + 1 + 1  

那么如果用遍历思维࿰

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值