Python list sort方法:列表排序

目录

描述

语法

使用示例

对列表进行排序

指定权值

逆序排序

注意事项

改变原列表顺序

2. 列表元素类型不一致

3. Python早些版本


描述

list.sort方法是Python的列表方法,用于对原列表进行排序。list.sort方法没有任何返回值。

语法

list.sort(key=function, reverse=boolean)
名称说明备注
list列表名称
key=function列表元素权值参数可省略的参数。省略时列表排序不考虑元素的权值
reverse=boolean排序规则参数可省略的参数。省略时reverse默认值False

返回值:None

⚠️注意:函数在原有列表上直接排序,因此该方法使用完后原列表的顺序发生了改变。

使用示例

对列表进行排序

当sort方法默认情况下对原列表进行升序排序。如果原列表内的元素是数字,则按照数字的大小从小到大排序;如果原列表的元素是字符串,则会按照其字符串中所有字符Unicode值总和,从小到大排序。

if __name__ == '__main__':
    number_list = [3, 7, 23, 1, -45, 9.9, 86]
    number_list.sort()
    print(number_list)
    # output: [-45, 1, 3, 7, 9.9, 23, 86]

    str_list = ["a", "A", "Ab", "Aa", "北京", "上海"]
    str_list.sort()
    print(str_list)
    # output: ['A', 'Aa', 'Ab', 'a', '上海', '北京']

指定权值

key参数指的是为列表元素的标记权值,并按照元素所对应的权值来排序元素。key=函数名,该函数的返回值作为元素的权值大小。例如,使用字符串长度作为元素的权值,用该权值排序元素是字符串的列表。在下面的例子中,分别不指定权值和指定权值来排序两个一模一样的列表。

if __name__ == '__main__':
    citys = ['Beijing', 'Xi\'an', 'Taiyuan', 'Taipei', 'HongKong']
    citys.sort()
    print(citys)
    # 不指定权值,默认按照字符表顺序排列
    # output: ['Beijing', 'HongKong', 'Taipei', 'Taiyuan', "Xi'an"]

    citys = ['Beijing', 'Xi\'an', 'Taiyuan', 'Taipei', 'HongKong']
    citys.sort(key=len)
    print(citys)
    # 使用len函数作为权值,按照字符串长度值从小到大的顺序排列
    # output: ["Xi'an", 'Taipei', 'Beijing', 'Taiyuan', 'HongKong']

逆序排序

关键字参数reverse表明列表排序是升序还是降序。当reverse参数默认值为False,当其值为False时,列表按升序排序;当reverse=True时,列表按降序排序:

if __name__ == '__main__':
    # 声明两个完全一致的列表
    demo1 = [3, 1, 2, 9, 23, 13, 6]
    demo2 = [3, 1, 2, 9, 23, 13, 6]

    # 默认情况下reverse=False,列表生序排列
    demo1.sort()
    print(demo1)
    # output: [1, 2, 3, 6, 9, 13, 23]

    # 当reverse为True时,列表降序排列
    demo2.sort(reverse=True)
    print(demo2)
    # output: [23, 13, 9, 6, 3, 2, 1]

💡提示:当key参数和reverse参数同时指定时,sort函数按照元素的权值进行升序(reverse=False)或降序(reverse=True)进行排序。

注意事项

改变原列表顺序

sort方法在调用后会改变列表本身的顺序。

2. 列表元素类型不一致

当列表中的所有元素都是同一种类型时,sort()函数会正常工作。有些时候甚至多种类型也可----例如整型和浮点型----只要它们能够自动地互相转换:

>>> list_a = [23, 21.2, 22, -67.6]
>>> list_a.sort()
>>> list_a
[-67.6, 21.2, 22, 23]

但是当元素之间的类型不能够互相转换的时候,Python就会报错,例如整数和字符串类型:

>>> a_list = [1, 3, '5', 2]
>>> a_list.sort()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: '<' not supported between instances of 'str' and 'int'

3. Python早些版本

在Python2中,sort函数还有一个cmp参数。

  • cmp -- 可选参数, 如果指定了该参数会使用该参数的方法进行排序。
<think>好的,我现在需要回答用户关于Python排序函数用法的问题,并且提供示例。首先,我需要回忆Python中常用的排序方法,比如内置的sorted()函数和列表sort()方法。这两者的区别在于sorted()返回新列表,而sort()原地排序,这可能是一个需要注意的点。 接下来,我应该给出基本示例,比如对数字列表进行升序和降序排序。用户可能需要知道如何通过reverse参数控制排序顺序。此外,使用key参数进行自定义排序也是很重要的部分,比如对字符串按长度排序,或者对字典按特定键排序。 然后,高级用法部分可能需要涉及lambda函数作为key参数,这在处理复杂数据结构时非常有用。比如按照元组的第二个元素排序,或者对对象列表根据属性排序。这里可以引用站内的引用[1],提到lambda函数在数据处理中的应用,例如与pandas的map()函数结合使用,虽然示例中可能不涉及pandas,但可以说明lambda的通用性。 另外,用户可能想知道如何稳定排序,或者处理无法直接比较的元素,这时候可能需要使用到functools.cmp_to_key,这部分虽然不常用,但值得提及。 然后,我需要考虑生成相关的问题,比如如何自定义排序规则、多条件排序、处理大型数据集时的效率问题,或者不同排序算法的应用场景。例如,快速排序和归并排序的区别,或者Timsort的特点,这些可以作为相关问题提出。 在检查过程中,要确保所有数学表达式都用$...$格式,比如在说明排序算法的时间复杂度时,比如$O(n \log n)$。如果有独立公式,需要用$$...$$,但可能在排序函数的回答中涉及较少,但如果有的话需要注意格式。 最后,确保引用正确,比如在提到lambda函数时添加引用标识[^1],可能还需要检查是否有其他需要引用的地方,比如内部函数调用如引用[2],但当前问题可能不涉及,所以可能只引用到第一个。 现在需要组织内容,确保结构清晰,分点说明,并附上代码示例。同时,检查LaTeX语法是否正确,比如时间复杂度的正确表示,以及使用中文回答。完成后,生成三个相关问题,帮助用户进一步学习。</think>### Python排序函数用法详解 Python提供了多种排序方法,主要分为**内置函数**和**自定义排序规则**两类。以下是具体用法和示例: --- #### 一、基础排序方法 1. **`sorted()`函数** 返回新排序列表,原数据不变: ```python nums = [3, 1, 4, 1, 5, 9] sorted_nums = sorted(nums) # 升序:[1, 1, 3, 4, 5, 9] reverse_sorted = sorted(nums, reverse=True) # 降序:[9, 5, 4, 3, 1, 1] ``` 2. **`list.sort()`方法** 原地修改列表,无返回值: ```python nums = [3, 1, 4, 1, 5, 9] nums.sort() # 原列表变为[1, 1, 3, 4, 5, 9] ``` --- #### 二、自定义排序规则 通过`key`参数指定排序依据,时间复杂度为$O(n \log n)$: 1. **按字符串长度排序** ```python words = ["apple", "kiwi", "banana"] sorted_words = sorted(words, key=lambda x: len(x)) # ["kiwi", "apple", "banana"] ``` 2. **按字典键值排序** ```python students = [{"name": "Alice", "age": 25}, {"name": "Bob", "age": 20}] sorted_students = sorted(students, key=lambda x: x["age"]) # Bob在前,Alice在后 ``` 3. **多条件排序** ```python data = [(2, 3), (1, 2), (1, 1)] sorted_data = sorted(data, key=lambda x: (x[0], -x[1])) # 先按第一元素升序,再按第二元素降序 ``` --- #### 三、高级用法 1. **`cmp_to_key`(Python 3兼容)** 需要导入`functools`,用于旧式比较函数: ```python import functools def compare(a, b): return a % 3 - b % 3 # 按模3结果排序 sorted_nums = sorted([7, 2, 5], key=functools.cmp_to_key(compare)) # [5, 7, 2] ``` 2. **对象属性排序** ```python class Person: def __init__(self, name, age): self.name = name self.age = age people = [Person("Tom", 30), Person("Ann", 25)] sorted_people = sorted(people, key=lambda p: p.age) ``` --- #### 四、性能与应用场景 - **内置排序算法**:Python的`sorted()`使用Timsort算法,结合了归并排序和插入排序的优势,时间复杂度为$O(n \log n)$。 - **稳定性**:当元素相同时,保持原有顺序,这对多条件排序非常关键。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值