(Nowcoder 2019国庆day5) E.Longest Increasing Subsequence(动态规划+思维)

31 篇文章 0 订阅
5 篇文章 0 订阅

传送门

题意:f[i]是以i结尾的最长不下降子序列长度,问删掉第i个数后f[1]^2 xor f[3]^2 xor .. xor f[n]^2(不算第i个)

解: 如果对最长不下降子序列理解的彻底的会觉得很简单吧,我们可以考虑到当不考虑一个数是,那有些f[i]可能会不受影响或者-1,但是我们如何快速得出呢。当然是先全部求一遍f[]了,然后我们需要一个mi[]数组,mi[i]定义为长度为i的不下降子序列长度的最小结尾,对于每个j,我们考虑是不是mi[f[j]-1]<a[j],如果是那么当前j为的LIS还是f[j](因为可以放a[j]嘛),反之就是不能了,那就是f[j]-1了。

#include<bits/stdc++.h>
#define il inline
#define pb push_back
#define ms(_data,v) memset(_data,v,sizeof(_data))
#define SZ(a) int((a).size())
using namespace std;
typedef long long ll;
const ll inf=0x3f3f3f3f;
const int N=5e3+5;
//il int Add(int &x,ll y) {return x=x+y>=mod?x+y-mod:x+y;}
//il int Mul(int &x,ll y) {return x=x*y>=mod?x*y%mod:x*y;}
int n,a[N],lis[N],mi[N];//mi[i]:lis长度为i的最小结尾 
int main(){
	std::ios::sync_with_stdio(0);cin.tie(0);
	vector<int> v;
	while(cin>>n){
		for(int i=1;i<=n;++i) cin>>a[i];
		v.clear();	
		for(int i=1;i<=n;++i){
			int p=lower_bound(v.begin(),v.end(),a[i])-v.begin();
			if(p==SZ(v)) v.pb(a[i]);
			else v[p]=a[i];
			lis[i]=p+1;
		}
		int ans=0;
		for(int i=1;i<=n;++i){
			for(int j=1;j<=n;++j) mi[j]=inf;
			mi[0]=0,ans=0;
			for(int j=1;j<=n;++j){
				if(j==i) continue;
				if(mi[lis[j]-1]<a[j]){
					ans^=lis[j]*lis[j];
					mi[lis[j]]=min(mi[lis[j]],a[j]);
				}
				else{
					ans^=(lis[j]-1)*(lis[j]-1);
					mi[lis[j]-1]=min(mi[lis[j]-1],a[j]);
				} 
			}
			cout<<ans<<" ";
		}
		cout<<endl;
	}
	return 0;
}








 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值