打家劫舍 II

力扣地址

动态规划:

因为题目说到住户首尾相连,需要考虑的问题是,当偷了第一家,就不能偷最后一家,

因此得出两个偷窃范围 0 到 (n - 2),1 到 (n - 1),得出这两个范围的最大值,

然后再比较最大值即为偷窃最高金额

考虑特殊情况,当只有一家时直接返回

当有两家或三家时,获取最大值

超过三家则有如下状态转移方程:

dp[i] = max(dp[i - 1], dp[i - 2] + nums[i])

class Solution {
public:
    int rob(vector<int>& nums) {
        int len = nums.size();
        if (1 == len) {
            return nums[0];
        }
        if (2 == len) {
            return max(nums[0], nums[1]);
        }
        if (3 == len) {
            return max(max(nums[0], nums[1]), nums[2]);
        }
        return max(robber(nums, 0, len - 2), robber(nums, 1, len - 1));
    }

    int robber(vector<int>& nums, int start, int end)
    {
        int first = nums[start], second = max(nums[start], nums[start + 1]);
        for (int i = start + 2; i <= end; ++i) {
            int temp = second;
            second = max(first + nums[i], second);
            first = temp;
        }
        return second;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值