人工智能直通车系列25【机器学习基础】(超参数调优方法(网格搜索等)Adaboost 算法原理)

目录

超参数调优方法(以网格搜索为例)

详细解释

场景示例

Adaboost 算法原理

详细解释

场景示例


超参数调优方法(以网格搜索为例)

详细解释

超参数是在模型训练之前需要手动设置的参数,它们不能通过模型从数据中学习得到。超参数的选择对模型的性能有着重要影响,因此需要进行调优。网格搜索(Grid Search)是一种常用的超参数调优方法。

原理:网格搜索会在给定的超参数取值范围内,对所有可能的超参数组合进行穷举搜索。它会使用交叉验证的方法评估每个超参数组合对应的模型性能,最终选择性能最优的超参数组合。

步骤

  1. 定义超参数空间:确定需要调优的超参数以及每个超参数的取值范围。
  2. 生成所有可能的超参数组合:将每个超参数的取值进行组合,得到所有可能的超参数组合。
  3. 使用交叉验证评估每个组合:对于每个超参数组合,使用交叉验证的方法在训练数据上评估模型的性能。
  4. 选择最优超参数组合:选择性能最优的超参数组合作为最终的超参数设置。

优缺点

  • 优点:简单易懂,能够保证找到给定超参数空间中的最优组合。
  • 缺点:计算成本高,尤其是当超参数空间较大时,需要评估大量的超参数组合。
场景示例
from sklearn import datasets
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split

# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 定义超参数空间
param_grid = {
    'C': [0.1, 1, 10],
    'kernel': ['linear', 'rbf']
}

# 创建支持向量机模型
svm = SVC()

# 创建网格搜索对象
grid_search = GridSearchCV(svm, param_grid, cv=5)

# 进行网格搜索
grid_search.fit(X_train, y_train)

# 输出最优超参数组合和对应的性能
print("最优超参数组合:", grid_search.best_params_)
print("最优性能:", grid_search.best_score_)

# 使用最优模型进行预测
best_model = grid_search.best_estimator_
y_pred = best_model.predict(X_test)

Adaboost 算法原理

详细解释

Adaboost(Adaptive Boosting)是一种集成学习算法,属于提升(Boosting)算法的范畴。它通过迭代地训练一系列弱分类器,并将它们组合成一个强分类器。

核心思想:Adaboost 算法在每一轮训练中会调整样本的权重,使得前一轮被错误分类的样本在当前轮的权重增加,而被正确分类的样本权重减小。这样,后续的弱分类器会更加关注那些难以分类的样本。

步骤

  1. 初始化样本权重:给每个样本赋予相同的初始权重,通常为w_i = \frac{1}{n},其中 n 是样本数量。
  2. 迭代训练弱分类器
    • 在每一轮迭代中,使用当前的样本权重训练一个弱分类器 h_t(x)
    • 计算弱分类器的误差率\epsilon_t=\sum_{i = 1}^{n}w_iI(y_i\neq h_t(x_i)),其中I是指示函数,当y_i\neq h_t(x_i)时,I = 1,否则I = 0
    • 计算弱分类器的权重 \alpha_t=\frac{1}{2}\ln(\frac{1 - \epsilon_t}{\epsilon_t})
    • 更新样本权重w_{i}^{new}=w_{i}\exp(-\alpha_ty_ih_t(x_i)),并进行归一化处理。
  3. 组合弱分类器:最终的强分类器 H(x)=\text{sign}(\sum_{t = 1}^{T}\alpha_th_t(x)),其中 T是弱分类器的数量。

优缺点

  • 优点
    • 可以自适应地调整样本权重,提高分类性能。
    • 对噪声和异常值具有一定的鲁棒性。
    • 可以使用各种类型的弱分类器,如决策树桩。
  • 缺点
    • 训练时间较长,因为需要迭代训练多个弱分类器。
    • 对异常值非常敏感,如果异常值的权重在迭代过程中不断增加,可能会影响最终的分类效果。
场景示例
from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 生成分类数据集
X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, n_classes=2, random_state=42)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建 Adaboost 分类器
adaboost = AdaBoostClassifier(n_estimators=50, random_state=42)

# 训练模型
adaboost.fit(X_train, y_train)

# 进行预测
y_pred = adaboost.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

通过以上示例,你可以了解网格搜索超参数调优方法和 Adaboost 算法的基本原理和使用方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浪九天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值