博弈论

1.巴什博弈
• 问题模型:只有一堆n个物品,两个人轮流从这堆物品中取物,规定 每次⾄至少取一个,最多取m个,最后取光者得胜
• n%(m + 1) == 0时,先手败,否则先手胜。
•巴什博弈的一般情况见HDU-2897
<抽象模型,有些要找规律>
2.威佐夫博弈
• 问题模型:有两堆各若干个物品,两个人轮流从某一堆或同时从两堆 中取同样多的物品,规定每次至少取⼀一个,多者不限,最后取 光者得胜。
• 求解:
  ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,…,n 方括号表示取整函数)
(ak,bk)是奇异局势,当A面对奇异局势是必输
<熟记公式>

3.尼姆博弈

• 问题模型:有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
  若a ^ b ^ c == 0,则(a, b, c)是必败态
4.SG定理

• SG函数需要Sprague-Grundy定理(SG定理)的理论支持。假设这样一个类nim游戏,n堆火柴,每堆有num[ i ]根火柴,可以把这个游戏拆成n个游戏,每个游戏为:有一堆火柴(设为总游戏中的第k堆),每次一个游戏者可以拿至少一个,至多全部,无法拿者输,两个游戏者轮流取。恩恩,建了这样一个问题模型,SG定理:游戏和的SG函数等于各个子游戏SG函数的Nim和。这样,可以用分治的思想简化问题。(所以,Nim中的Bouton定理(即所有数nim和 ?= 0 的判定定理)可以看做SG定理在Nim游戏中的直接应用,因为单堆Nim游戏SG函数为SG(x) = x ),SG函数值是它的所有子游戏的SG函数值的异或。(0必败)
SG函数的难点就在于找必败(必胜状态)然后和单堆nim思路建立联系,或者直接模拟sg函数过程。
主要有两种模拟SG函数的过程:(总结自hdu 1848)
1:普通直接模拟
#define MAXN 1000
int sg[MAXN + 5];
//num[ 1 , 2 ....] :可以取走的石子个数
//而used数组用于记录后继状态的sg值存在与否
//count:num数组中有效数字总数
void SG(int x)
{
memset(sg , 0 , sizeof(sg));
      for(int i = 1; i <= x; i++)
     {
        bool used[MAXN + 5] = {0};  
        for(int j = 1; j <= count; j++)
        {
            if(i - num[ j ] >= 0)
                used[ sg [ i - num[ j ] ] ] = 1;
        }
        for(int j = 0; j <= i; j++)
        {
            if(used[j] == 0)
            {
                sg[i] = j;
                break;
            }
        }
    }
}
2:用dfs进行优化
int SG_dfs(int x)
{
   if(sg[x] != -1)
        return sg[x];
    bool used[MAXN + 5] = {0};
    for(int i = 1; i <= count; i++)
    {
        if(x >= num[ i ])
        {
            sg[x - num[i]] = SG_dfs(x - num[i]);
            used[ sg [ x - num[ i ] ] ] = 1;
        }
    }
    for(int i = 0; i <= x; i++)//i <= x可有可无,但为了安全,还是加上
    {
        if(used[i] == 0)
        {
            return sg[x] = i;
        }
    }
}

5.PN图的构建
P(previous):必败状态
N(next):必胜状态
特点1 :该状态为必败状态,当且仅当所有后继都是必胜状态。
特点1 :该状态为必胜状态,当且仅当至少一个后继时必败状态。
特例:没有后继状态(即终态)为必败状态。
所以,可以根据终态为P
例如:HDU-2147
PN图构建代码为:
#include <bits/stdc++.h>
using namespace std;
bool ma[2001][2001];//1 P 0 N;
int main(){
       int i,j,k;
       ma[1][1]=1;
       for(i=2;i<=2000;i++)
       {
              if(ma[i-1][1])
                     ma[i][1]=0;
              else ma[i][1]=1;
              for(j=2;j<i;j++){
                     if(!ma[i][j-1]&&!ma[i-1][j-1]&&!ma[i-1][j])
                            ma[i][j]=1;
                     else ma[i][j]=0;
              }
              if(ma[1][i-1])
                     ma[1][i]=0;
              else ma[1][i]=1;
              for(j=2;j<i;j++){
                     if(!ma[j-1][i]&&!ma[j-1][i-1]&&!ma[j][i-1])
                            ma[j][i]=1;
                     else ma[j][i]=0;
              }
              if(!ma[i][i-1]&&!ma[i-1][i-1]&&!ma[i-1][i])
                     ma[i][i]=1;
              else ma[i][i]=0;
       }
       int M,N;
       for(i=1;i<=10;i++){
              for(j=1;j<=10;j++)
                     printf("%c ",ma[i][j]?'P':'N');
              printf("\n");
       }
       while(scanf("%d%d",&M,&N)&&M&&N){
              if(ma[M][N]) printf("What a pity!\n");
              else printf("Wonderful!\n");
       }
       return 0;
}
<不同题目有不同的构建代码,但都按照PN图两个特点来实现>
<部分题目手动画PN图很方便~>
6.FIB博弈 

有一堆个数为n的石子,游戏双方轮流取石子,满足:

1.先手不能在第一次把所有的石子取完;

2.之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。

约定取走最后一个石子的人为赢家,求必败态。

斐波那契博弈有一个非常重要的性质:

先手必败,当且仅当石子数为斐波那契数:
(图截自360百科)

先看看FIB数列的必败证明:

 

1、当i=2时,先手只能取1颗,显然必败,结论成立。

2、假设当i<=k时,结论成立。

     则当i=k+1时,f[i] = f[k]+f[k-1]。

     则我们可以把这一堆石子看成两堆,简称k堆和k-1堆。

    (一定可以看成两堆,因为假如先手第一次取的石子数大于或等于f[k-1],则后手可以直接取完f[k],因为f[k] < 2*f[k-1])对于k-1堆,由假设可知,不论先手怎样取,后手总能取到最后一颗。下面我们分析一下后手最后取的石子数x的情况。

     如果先手第一次取的石子数y>=f[k-1]/3,则这小堆所剩的石子数小于2y,即后手可以直接取完,此时x=f[k-1]-y,则x<=2/3*f[k-1]。

     我们来比较一下2/3*f[k-1]与1/2*f[k]的大小。即4*f[k-1]与3*f[k]的大小,由数学归纳法不难得出,后者大。

     所以我们得到,x<1/2*f[k]。

     即后手取完k-1堆后,先手不能一下取完k堆,所以游戏规则没有改变,则由假设可知,对于k堆,后手仍能取到最后一颗,所以后手必胜

     即i=k+1时,结论依然成立。

对于不是FIB数,首先进行分解。

 

分解的时候,要取尽量大的Fibonacci数。

比如分解85:85在55和89之间,于是可以写成85=55+30,然后继续分解30,30在21和34之间,所以可以写成30=21+9,

依此类推,最后分解成85=55+21+8+1。

则我们可以把n写成  n = f[a1]+f[a2]+……+f[ap]。(a1>a2>……>ap)

我们令先手先取完f[ap],即最小的这一堆。由于各个f之间不连续,则a(p-1) > ap  + 1,则有f[a(p-1)] > 2*f[ap]。即后手只能取f[a(p-1)]这一堆,且不能一次取完。

此时后手相当于面临这个子游戏(只有f[a(p-1)]这一堆石子,且后手先取)的必败态,即先手一定可以取到这一堆的最后一颗石子。

同理可知,对于以后的每一堆,先手都可以取到这一堆的最后一颗石子,从而获得游戏的胜利。

例:HDU 2516 <此题可手动画出PN图发现规律>

明显的FIB博弈
#include<iostream> 
#include<cstdio> 
#include<cstring> 
#include<algorithm> 
#include<cmath> 
#include<vector> 
#include<string> 
#include<map> 
#define LL long long 
#define N 1000000 
#define inf 1<<20 
using namespace std; 
int fib[50]; 
int main(){  
   fib[0]=1;fib[1]=2;  
   for(int i=2;i<45;i++)  
       fib[i]=fib[i-1]+fib[i-2];  
   int n;  
   while(scanf("%d",&n)!=EOF&&n){  
       int i=0;  
       for(i=0;i<45;i++)  
           if(fib[i]==n)  
               break;  
       if(i<45)  
           puts("Second win");  
       else  
           puts("First win");  
   }  
   return 0; 
}  

引用:https://www.cnblogs.com/naturepengchen/articles/3837643.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值