博弈论—入门篇

四个典型博弈论

关键思想:如何找到必胜操作。

(一)巴什博弈

有一堆n个物品,两人轮流取,规定每次至少取一个,最多取m个,最后取光者得胜。
核心思想:控制两人每一回合取数个数和为m+1。主要可以分以下几种情况:

  • 如果n<m+1,那么先取者第一次一次性一定能取完,先取者一定获胜。
  • 如果n=m+1,先取者第一次取x个,后取者取m+1-x个,后取一定能保证一个回合内取完,后取者一定能获胜。
  • 如果n=k(m+1),即n为m+1的倍数关系,此情况由第二种情况推广,考虑此博弈核心思想,控制每一回合取数个数和为m+1,则能保证经过k-1个回合后物品剩余数为m+1即回到第二种情况,显然后取者一定能获胜。
  • 如果n=k(m+1)+mod,即n不为m+1的倍数关系,先取者可以先取走mod个物品,此时该情况变为第三种情况n=k(m+1)但是此时又后取者先取,显然先取者在此情况一定获胜。

(二)尼姆博弈(Nim)

n堆物品,第i堆有ai件物品,两人轮流从其中一堆物品中取任意件物品(至少拿一件),最后不能拿的人输。
分以下情况考虑:

  • 如果n=1,先手取走一堆,先手胜利

  • 如果n=2,继续分情况考虑,如果a1!=a2,先手在多的一堆里拿走|a1-a2|,之后后手无论在哪堆取走多少个先手都可以在另一堆取同样多个,直到后手将其中一堆取完,先手将另一堆取完即可,则先手必胜。如果a1=a2,同理可证明,后手必胜。

  • 由此可以发现规律当n大于3时,直接给出结论,对每一堆物品件数记作ai有:
    a 1 ⊕ a 2 ⊕ a 3 . . . . . ⊕ a n = 0 a_1\oplus a_2 \oplus a_3.....\oplus a_n=0 a1a2a3.....an=0
    补充说明:上述计算时要将每一堆物品数量转化为二进制。且上述结论满足时后手一定获胜,反之先手获胜。可以理解为先手任意操作使异或和不为0时,后手总存在一种操作使异或和变回0,所以后手必胜。
    补充性质:

    • 全0异或还是为0
    • 当异或和为0时,任一操作将使其不为0(这里的操作指的是任意取物品)
    • 当异或和不为0时,存在一个操作使其为0

(三)威佐夫博弈(Wythoff)

概述

威佐夫博弈(Wythoff Game)是一个经典的组合博弈论问题,由荷兰数学家 W. A. Wythoff 于 1907 年提出。该博弈涉及两个玩家轮流操作的一堆或两堆物品,每次操作时,玩家可以从某一堆中取任意数量的物品,或者从两堆中取相同数量的物品。游戏的目标是使对方无合法操作可做,从而获胜。

博弈规则

威佐夫博弈的具体规则如下:

  1. 初始时,桌上有两堆物品,数量分别为 a和b(假设 a≤b)。
  2. 两位玩家轮流操作,每次可以选择:
    • 从某一堆中取走任意数量(至少一个)的物品,或者
    • 从两堆中取走相同数量的物品。
  3. 无法进行合法操作的玩家输掉游戏。

博弈状态与必胜策略

在威佐夫博弈中,有些状态是“必胜态”,即当前玩家一定能通过适当操作赢得比赛;而另一些状态是“必败态”,即无论如何操作都会输给对手。研究威佐夫博弈的核心在于识别这些状态,从而制定相应的必胜策略。

数学分析

威佐夫博弈(Wythoff Game)是一种经典的组合博弈论问题。在这个博弈中,两个玩家轮流操作,从两堆物品中取走一定数量的物品,目标是使对方无合法操作可做从而获胜。理解和分析威佐夫博弈的关键在于确定“必败态”和“必胜态”。

必败态与必胜态

在威佐夫博弈中,有些状态是“必败态”,即无论如何操作都会输给对手;另一些状态是“必胜态”,即当前玩家一定能通过适当操作赢得比赛。我们的目标是识别这些状态,从而制定相应的必胜策略。

黄金分割比与必败态

Wythoff 通过研究发现,威佐夫博弈的必败态满足特定的数学关系。设有序对 (a,b)是某一博弈状态,其中 a≤b。必败态满足以下条件:
b = ⌊ a × φ ⌋ + a b=⌊a×φ⌋+a b=a×φ+a
其中,φ是黄金分割比,即:
φ = 1 + 5 2 φ= \frac{1 + \sqrt{5}}{2} φ=21+5
⌊x⌋表示对 x 取整。也就是说,如果一对 (a,b)满足上述公式,则该状态为必败态,否则为必胜态。

(四)斐波那契博弈

与巴什博弈的区别就是游戏规则的动态化,游戏规则从固定的限制取法m,变成每次取的时候依赖于对手刚才取的物品数。此处需要借助Zeckendorf定理(齐肯多夫定理)

Zeckendorf定理

任何正整数都可以表示为若干个不连续的的Finbonacci数之和。

结论

  • 后手必胜:当物品总数为斐波那契数列中的数时:1,1,2,3,5,8,13…
    补充说明:可以用数学归纳法进行证明。
  • 先手必胜:当物品总数不为斐波那契数量,且可以为任意若干个不连续的Finbonacci数之和。
    补充说明:先手可以取走第一堆最小的斐波那契数,由于斐波那契数列中有an+2>2an,所以后手一定不能拿完下一堆的物品数,此时情况相当于后手必胜的情况(但此时后手和先手交换,相当于后手先从斐波那契数中取物品,则先手一定是这一堆最后取完的一方)所以先手存在必胜方案。
  • 13
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值