The Algorithmic Foundations of Differential Privacy学习笔记

       在完成了《动手学差分隐私》后现在对差分隐私已经有了基础的认识,现在决定深入学习差分隐私算法,《The Algorithmic Foundations of Differential Privacy》对差分隐私中的实现机制进行了证明。

Basic Terms

        这一章主要就是讲了差分隐私的基础定义,但是讲得感觉太复杂,不适合新手上手,我看这本书主要是想推算法证明,所以对定义快速过了一遍。新手入门建议看《动手学差分隐私》,附带链接:https://github.com/uvm-plaid/programming-dp

        2.1和2.2讲了一些基础的差分隐私相关的定义,可进行了解。由于我已经学了《动手学差分隐私》,所以这部分粗略地看了一遍。

2.3 Formalizing differential privacy

       此节在一开始讲述了差分隐私按进程提供隐私,在这个过程中引入了随机响应机制:

        1. 抛一枚硬币。

        2. 如果反面,则如实回答。

        3. 如果正面,则抛第二枚硬币,如果正面则回答“是”,如果反面则回答“否”。

        这是在结果中加入了合理的否认,即第三种情况。这种随机性对隐私保护是必要的,在隐私保护中需要讨论输入和输出的概率空间,本专著中使用离散概率空间。一般来说,具有域 A 和(离散)范围 B 的随机算法将与从 A 到 B 上的概率单纯形的映射相关联,表示为 Δ(B):

定义 2.1(概率单纯形)。给定一个离散集 B,B 上的概率单纯形,表示为 Δ(B),定义为:

定义 2.2(随机算法)。具有域 A 和离散范围 B 的随机算法 M 与映射 M : A → Δ(B) 相关联。对于输入 a ∈ A,算法 M 输出 M(a)=b,每个 b ∈ B 的概率为 (M (a))b。概率空间位于算法 M 的抛硬币上。

定义 2.3(数据库之间的距离)。数据库 x 的 L1 范数表示为(L1范数和L2范数指“曼哈顿距离”和“欧氏距离”):

\left | \left | X-Y \right | \right |_1表示x与y之间有多少记录不同的度量

在使用多重表时常使用Hamming distance(汉明距离)进行数据库之间的距离,在实际使用中,多重集表示通常也会更加简洁。

定义 2.4(差分隐私)。具有域\mathbb{N}^{^{\left \| \left | \chi \right | \right \|}}的随机算法 M是 (ε, δ)-差分隐私的,如果对于所有 S⊆Range(M) 并且对于所有 x, y ∈ \mathbb{N}^{^{\left \| \left | \chi \right | \right \|}}使得\left | \left | X-Y \right | \right |_1≤ 1:(这是最基础的差分隐私的定义)

如果 δ =0,我们说 M 是 ε-差分隐私的。然而,即使 δ 可以忽略不计,(ε, 0)- 和 (ε, δ)- 差分隐私之间也存在理论上的区别。其中最主要的是量化顺序的转换。 (ε, 0)-差分隐私确保,对于机制 M(x) 的每次运行,观察到的输出(几乎)同样有可能在每个相邻数据库上同时观察到。相反,(ε,δ)差分隐私表示,对于每对相邻数据库 x, y,事后观察到的值 M(x) 在数据库为 x 时比数据库为 y 时生成的可能性要大得多或小得多。然而,给定输出 xi ∼M(x),可能会找到一个数据库 y,使得 xi 比数据库为 x 时更有可能在 y 上产生。也就是说,分布 M(y) 中的 xi 质量可能是远大于其在分布 M(x) 中的质量。

然后定义了观察 ξ 所产生的隐私损失:

接着就是证明了差分隐私的后处理性,这个比较简单,所以只做简单展示:

然后本章还讲了串行性,以及一些其他的基础性质。较为简单,不做记录。 

  • 13
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值