- 博客(3)
- 收藏
- 关注
原创 差分隐私Dwork2013:The Algorithmic Foundations of Differential Privacy
差分隐私Dwork2013:The Algorithmic Foundations of Differential Privacy第2章 Basic Terms(差分隐私定义及重要性质)1. 隐私定义面向数据分析的隐私要求数据分析者在数据分析后对任何个人的了解相比数据分析前不会增加,称为“nothing is learned”。“Nothing is learned” 定义方法可以与密码系统中的语义安全(semantic security) 关联。 语义安全 表示从 密文(ciphertext)
2022-01-14 17:34:53
644
原创 论文阅读 Local Differential Privacy-Based Federated Learning for Internet of Things
论文阅读笔记 Local Differential Privacy-Based Federated Learning for Internet of Things
2022-01-12 16:08:55
1536
原创 论文阅读 LDP-FL: Practical Private Aggregation in Federated Learning with Local Differential Privacy
论文阅读笔记,LDP-FL: Practical Private Aggregation in Federated Learning with Local Differential Privacy
2022-01-12 15:31:33
767
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人