参考地址:点击打开链接
最小树形图是从一个源点出发,选取一些边,使得能够从源点可以到达其他所有点,并且权和最小,即有向图的最小生成树。
算法步骤:
1.判断图的连通性,若不连通直接无解,否则一定有解。
2.为除了根节点以外的所有点选择一个权值最小的入边,假设用pre数组记录前驱,f数组记录选择的边长,记所选边权和为temp。
3.(可利用并查集)判断选择的的边是否构成环,若没有则直接ans+=temp并输出ans,若有,则进行下一步操作。
4.对该环实施缩点操作,设该环上有点V1,V2……Vi……Vn,缩成的点为node ,对于所有不在环中的点P进行如下更改:
(1) 点P到node的距离为min{a[p,Vi]-f[Vi]} (a为边集数组)
(2)点node到p的距离为min{a[Vi,p]}
操作(1)的理解:先假设环上所有边均选上,若下次选择某一条边进入该环,则可以断开进入点与进入点的前驱之间的边,即断开F[进入点],所以等效为直接把a[p,node]赋值为min{a[p,Vi]-f[Vi]}。
特别提醒:本题有自环,可以提前删掉,因为它没有用。
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
using namespace std;
const int maxn = 100 + 7;
const int INF = ~0U >> 1;
double G[maxn][maxn]; // 图,不能到达设为INF
int n, m;
double x[maxn], y[maxn];
int p[maxn]; // 点的前驱
int vis[maxn];
bool in[maxn]; // 点是否被删掉
double Distance(double a, double b) {
return sqrt(a * a + b * b);
}
void dfs(int u) {
for(int i = 1; i <= n; ++i) {
if(!vis[i] && G[u][i] < INF) {
vis[i] = 1;
dfs(i);
}
}
}
double slove(int u) {
memset(vis, 0, sizeof(vis));
vis[u] = 1;
dfs(1);
for(int i = 1; i <= n; ++i)
if(!vis[i]) return -1; // 图必须是联通的
memset(vis, 0, sizeof(vis));
memset(in, false, sizeof(in));
for(int i = 1; i <= n; ++i) G[i][i] = INF;
double ans = 0;
while(true) {
for(int i = 1; i <= n; ++i) ///为除了根节点以外的所有点选择一个权值最小的入边
if(i != u && !in[i]) { ///除了根节点以及被删除的点
p[i] = i;
for(int j = 1; j <= n; ++j)
if(!in[j] && G[j][i] < G[p[i]][i])
p[i] = j;
}
bool ok = false;
int i;
for(i = 1; i <= n; ++i) /// 判断是否有环
if(i != u && !in[i]) {
int cnt = 0, j = i;
while(j != u && p[j] != i && cnt <= n) ++cnt, j = p[j];
if(j == u || cnt > n) continue; //没有环
ok = true; // 有环
break;
}
if(!ok) { //没有环,加和退出
for(int i = 1; i <= n; ++i)
if(i != u && !in[i]) ans += G[p[i]][i];
return ans;
}
memset(vis, 0, sizeof(vis));
int j = i;
do { /// 缩点 把环缩成i一个点
ans += G[p[j]][j];
vis[j] = 1;
in[j] = 1;
j = p[j];
} while(i != j);
in[i] = 0; /// 别忘了
for(int k = 1; k <= n; ++k) /// 修改距离
if(vis[k]) {
for(j = 1; j <= n; ++j)
if(vis[j] == 0) {
if(G[i][j] > G[k][j]) G[i][j] = G[k][j];
if(G[j][k] < INF && G[j][k] - G[p[k]][k] < G[j][i])
G[j][i] = G[j][k] - G[p[k]][k];
}
}
}
return ans;
}
int main() {
while(scanf("%d%d", &n, &m) != EOF) {
for(int i = 1; i <= n; ++i)
scanf("%lf%lf", &x[i], &y[i]);
int u, v;
for(int i = 0; i <= n; ++i)
for(int j = 0; j <= n; ++j) G[i][j] = INF;
for(int i = 1; i <= m; ++i) {
scanf("%d%d", &u, &v);
if(u == v) continue; //去掉自环
double d = Distance(x[u] - x[v], y[u] - y[v]);
if(d < G[u][v]) G[u][v] = d; // 重边选最小
}
// for(int i = 1; i <= n; ++i) {
// for(int j = 1; j <= n; ++j)
// printf("%.3f ", G[i][j]);
// printf("\n");
// }
double ans = slove(1);
if(ans >= 0) printf("%.2f\n", ans);
else printf("poor snoopy\n");
}
return 0;
}