hdu 1402 A * B Problem Plus(快速傅里叶变换模板)

快速傅里叶变换在这里的主要用处就是可以快速求出两个多项式的乘积,可以把两个大数转换成a1 + a2*x + a3*x^2......的形式,利用FFT快速求值。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn = 200000 + 7;
const double PI = acos(-1.0);
struct complex {
    double a, b;
    complex(double aa = 0, double bb = 0) : a(aa), b(bb) { }
    complex operator+(const complex &e) {
        return complex(a + e.a, b + e.b);
    }
    complex operator-(const complex &e) {
        return complex(a - e.a, b - e.b);
    }
    complex operator*(const complex &e) {
        return complex(a * e.a - b * e.b, a * e.b + b * e.a);
    }
};

void change(complex y[], int len) {
    for(int i = 1, j = len / 2; i < len - 1; ++i) {
        if(i < j) swap(y[i], y[j]);
        int k = len / 2;
        while(j >= k) {
            j -= k;
            k /= 2;
        }
        if(j < k) j += k;
    }
    return ;
}
//FFT快速傅里叶变换的模板,用以将多项式系数转换成单位根,这样得到的两个序列逐个相乘到得就是系数
void FFT(complex y[], int len, int on) {
    change(y, len);
    for(int h = 2; h <= len; h <<= 1) {
        complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
        for(int j = 0; j < len; j += h) {
            complex w(1, 0);
            for(int k = j; k < j + h / 2; ++k) {
                complex u = y[k];
                complex t = w * y[k+h/2];
                y[k] = u + t;
                y[k+h/2] = u - t;
                w = w * wn;
            }
        }
    }
    if(on == -1) {
        for(int i = 0; i < len; ++i)
            y[i].a /= len;
    }
}

int num[maxn];
complex x[maxn], y[maxn];
char s1[maxn/4], s2[maxn/4];

int main() {
    while(scanf("%s%s", s1, s2) != EOF) {
        int len1 = strlen(s1), len2 = strlen(s2);
        int len = 1;
        //这里求最接近且大于n+m-1的2^k,方便二叉树形式的运用吧
        while(len < len1 + len2) len <<= 1;
        for(int i = 0; i < len1; ++i)
            x[i] = complex(s1[len1-i-1] - '0', 0);
        for(int i = len1; i < len; ++i)
            x[i] = complex(0, 0);

        for(int i = 0; i < len2; ++i)
            y[i] = complex(s2[len2-i-1] - '0', 0);
        for(int i = len2; i < len; ++i)
            y[i] = complex(0, 0);

        FFT(x, len, 1);//FFT转换成单位根形式
        FFT(y, len, 1);

        for(int i = 0; i < len; ++i)
            x[i] = x[i] * y[i];//卷积
        FFT(x, len, -1);//结果转换回来

        int temp = 0;
        for(int i = 0; i < len; ++i) {
            temp = temp + (int)(x[i].a + 0.5);
            num[i] = temp % 10;
            temp /= 10;
        }
        while(temp) {
            num[len++] = temp % 10;
            temp /= 10;
        }
        int i = len - 1;
        while(num[i] == 0 && i > 0) i--;
        for(; i >= 0; --i)
            printf("%d", num[i]);
        printf("\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值