题目描述
小易来到了一条石板路前,每块石板上从1挨着编号为:1、2、3.......
这条石板路要根据特殊的规则才能前进:对于小易当前所在的编号为K的 石板,小易单次只能往前跳K的一个约数(不含1和K)步,即跳到K+X(X为K的一个非1和本身的约数)的位置。 小易当前处在编号为N的石板,他想跳到编号恰好为M的石板去,小易想知道最少需要跳跃几次可以到达。
例如:
N = 4,M = 24:
4->6->8->12->18->24
于是小易最少需要跳跃5次,就可以从4号石板跳到24号石板
输入描述:
输入为一行,有两个整数N,M,以空格隔开。 (4 ≤ N ≤ 100000) (N ≤ M ≤ 100000)
输出描述:
输出小易最少需要跳跃的步数,如果不能到达输出-1
示例1
输入
4 24
输出
5
代码如下,利用广度搜素算法
#include<iostream>
#include<queue>
#include<vector>
using namespace std;
void getNum(vector<int> &array, int num)
{
array.clear();
for (int i = 2; i <= num / 2; i++)
{
if (num%i == 0)
{
array.push_back(i);
}
}
}
struct Point
{
int num;
bool visited;
int step;
bool inQueue;
};
int main()
{
int N;
int M;
cin >> N;
cin >> M;
int length = M + 1;
Point *point = new Point[length];
for (int i = 0; i < length; i++)
{
point[i].num = i;
point[i].visited = false;
point[i].step = -1;
point[i].inQueue = false;
}
queue<Point> Q;
point[N].inQueue = true;
Q.push(point[N]);
int dis = 0;
while (Q.size()>0)
{
int size = Q.size();
cout << "size = " << size << endl;
while (size > 0)
{
Point tempPoint = Q.front();
Q.pop();
point[tempPoint.num].visited = true;
point[tempPoint.num].step = dis;
cout << "tempPoint.num = " << tempPoint.num << endl;
vector<int> array;
getNum(array, tempPoint.num);
for (int i = 0; i < array.size(); i++)
{
cout << "array[i] = " << array[i] << endl;
if (tempPoint.num + array[i] <= M&&point[tempPoint.num + array[i]].visited == false && point[tempPoint.num + array[i]].inQueue == false)
{
point[tempPoint.num + array[i]].inQueue = true;
Q.push(point[tempPoint.num + array[i]]);
}
}
size--;
}
dis++;
}
for (int i = N; i <= M; i++)
{
cout << point[i].step << endl;
}
system("pause");
}
但是在牛客网上只有70%的通过率,算法复杂度过大。