·二叉树
为什么需要树这种数据结构
①数组存储方式的分析
优点:通过下标方式访问元素,速度快。对于有序数组,还可使用二分查找提高检索速度。 缺点:如果要检索具体某个值,或者插入值(按一定顺序)会整体移动,效率较低
②链式存储方式的分析
优点:在一定程度上对数组存储方式有优化(比如:插入一个数值节点,只需要将插入节点,链接到链表中即可, 删除效率也很好)。
缺点:在进行检索时,效率仍然较低,比如(检索某个值,需要从头节点开始遍历)
③树存储方式的分析 能提高数据存储,读取的效率, 比如利用 二叉排序树(Binary Sort Tree),既可以保证数据的检索速度,同时也可以保证数据的插入,删除,修改的速度。
案例: [7, 3, 10, 1, 5, 9, 12]
二叉树的概念
①树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树。
②二叉树的子节点分为左节点和右节点。
③如果该二叉树的所有叶子节点都在最后一层,并且结点总数= 2^n -1 , n 为层数,则我们称为满二叉树。
④如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树
完全二叉树 , 如果把 (61)节点删除, 就不是完全二叉树了,因为叶子节点不连续了
二叉树的遍历
前序遍历: 先输出父节点,再遍历左子树和右子树
中序遍历: 先遍历左子树,再输出父节点,再遍历右子树
后序遍历: 先遍历左子树,再遍历右子树,最后输出父节点
小结: 看输出父节点的顺序,就确定是前序,中序还是后序
代码:
package tree;
public class BinaryTree1 {
public static void main(String[] args) {
Node zhangke1 = new Node(1, "zhangke1");
Node zhangke2 = new Node(2, "zhangke2");
Node zhangke3 = new Node(3, "zhangke3");
Node zhangke4 = new Node(4, "zhangke4");
Node zhangke5 = new Node(5,"zhangke5");
zhangke1.right=zhangke3;
zhangke1.left=zhangke2;
zhangke3.right=zhangke4;
zhangke3.left=zhangke5;
binaryTree binaryTree1 = new binaryTree();
binaryTree1.setRoot(zhangke1);
binaryTree1.preOrder();
System.out.println();
binaryTree1.midOrder();
System.out.println();
binaryTree1.postOrder();
}
}
class binaryTree{
private Node root;
public void setRoot(Node root){
this.root=root;
}
public void preOrder(){
if (root != null) {
root.preOrder();
}else {
System.out.println("EMPTY");
}
}
public void midOrder(){
if (root != null) {
root.midOrder();
}else {
System.out.println("EMPTY");
}
}
public void postOrder(){
if (root != null) {
root.postOrder();
}else {
System.out.println("EMPTY");
}
}
}
class Node{
private int no;
private String name;
Node left;
Node right;
public Node(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Node getLeft() {
return left;
}
public void setLeft(Node left) {
this.left = left;
}
public Node getRight() {
return right;
}
public void setRight(Node right) {
this.right = right;
}
@Override
public String toString() {
return "Node{" +
"no=" + no +
", name='" + name + '\''
+
'}';
}
public void preOrder(){
System.out.println(this);
if (this.left != null) {
this.left.preOrder();
}
if (this.right != null) {
this.right.preOrder();
}
}
public void midOrder(){
if (this.left != null) {
this.left.midOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.midOrder();
}
}
public void postOrder(){
if (this.left != null) {
this.left.postOrder();
}
if (this.right != null) {
this.right.postOrder();
}
System.out.println(this);
}
}
二叉树-查找指定节点
分别利用前中后序查找 找5: 前序比较了4次 中序比较了3次 后序比较了2次
代码: Node.left和Node.right最好定义为private然后通过set/get来设置/获取
package tree;
public class BinaryTree1 {
public static void main(String[] args) {
Node zhangke1 = new Node(1, "zhangke1");
Node zhangke2 = new Node(2, "zhangke2");
Node zhangke3 = new Node(3, "zhangke3");
Node zhangke4 = new Node(4, "zhangke4");
Node zhangke5 = new Node(5,"zhangke5");
zhangke1.right=zhangke3;
zhangke1.left=zhangke2;
zhangke3.right=zhangke4;
zhangke3.left=zhangke5;
binaryTree binaryTree1 = new binaryTree();
binaryTree1.setRoot(zhangke1);
System.out.println("前序遍历:");
binaryTree1.preOrder();
System.out.println();
System.out.println("中序遍历:");
binaryTree1.midOrder();
System.out.println();
System.out.println("后序遍历:");
binaryTree1.postOrder();
System.out.println("前序遍历查找5:");//四次
Node node = binaryTree1.preOrderSearch(5);
if(node!=null){
System.out.println("找到了"+node.toString());
}else {
System.out.println("没找到");
}
System.out.println("中序遍历查找5:");//三次
Node node1 = binaryTree1.midOrderSearch(5);
if(node1!=null){
System.out.println("找到了"+node.toString());
}else {
System.out.println("没找到");
}
System.out.println("后序遍历查找5:");//两次
Node node2 = binaryTree1.postOrderSearch(5);
if(node1!=null){
System.out.println("找到了"+node.toString());
}else {
System.out.println("没找到");
}
}
}
class binaryTree{
private Node root;
public void setRoot(Node root){
this.root=root;
}
public void preOrder(){
if (root != null) {
root.preOrder();
}else {
System.out.println("EMPTY");
}
}
public void midOrder(){
if (root != null) {
root.midOrder();
}else {
System.out.println("EMPTY");
}
}
public void postOrder(){
if (root != null) {
root.postOrder();
}else {
System.out.println("EMPTY");
}
}
public Node preOrderSearch(int no){
if(root!=null){
return root.preOrderSearch(no);
}else {
return null;
}
}
public Node midOrderSearch(int no){
if(root!=null){
return root.midOrderSearch(no);
}else {
return null;
}
}
public Node postOrderSearch(int no){
if(root!=null){
return root.postOrderSearch(no);
}else {
return null;
}
}
}
class Node{
private int no;
private String name;
Node left;
Node right;
public Node(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Node getLeft() {
return left;
}
public void setLeft(Node left) {
this.left = left;
}
public Node getRight() {
return right;
}
public void setRight(Node right) {
this.right = right;
}
@Override
public String toString() {
return "Node{" +
"no=" + no +
", name='" + name + '\''
+
'}';
}
public void preOrder(){
System.out.println(this);
if (this.left != null) {
this.left.preOrder();
}
if (this.right != null) {
this.right.preOrder();
}
}
public void midOrder(){
if (this.left != null) {
this.left.midOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.midOrder();
}
}
public void postOrder(){
if (this.left != null) {
this.left.postOrder();
}
if (this.right != null) {
this.right.postOrder();
}
System.out.println(this);
}
//前序遍历查找
public Node preOrderSearch(int no){
System.out.println("1");
if(this.no==no){
return this;
}
Node resNode = null;
if (this.left != null) {
resNode = this.left.preOrderSearch(no);
}
if(resNode!=null){
return resNode;
}
if (this.right != null) {
resNode = this.right.preOrderSearch(no);
}
//这里无论找不找得到 都要返回 找不到的话返回一个null
return resNode;
}
//中序遍历查找
public Node midOrderSearch(int no){
Node resNode = null;
if (this.left != null) {
resNode = this.left.midOrderSearch(no);
}
if(resNode!=null){
return resNode;
}
System.out.println("2");
if(this.no==no){
return this;
}
if (this.right != null) {
resNode = this.right.midOrderSearch(no);
}
//这里无论找不找得到 都要返回 找不到的话返回一个null
return resNode;
}
//后序遍历查找
public Node postOrderSearch(int no){
Node resNode = null;
if (this.left != null) {
resNode = this.left.postOrderSearch(no);
}
if(resNode!=null){
return resNode;
}
if (this.right != null) {
resNode = this.right.postOrderSearch(no);
}
if(resNode!=null){
return resNode;
}
System.out.println("3");
if(this.no==no){
return this;
}
return null;
}
}
二叉树-删除节点
如果删除的节点是叶子节点,则删除该节点
如果删除的节点是非叶子节点,则删除该子树(临时要求 后面会优化).
写代码测试,删除掉 5号叶子节点 和 3号子树.
代码:
package tree;
public class BinaryTree1 {
public static void main(String[] args) {
Node zhangke1 = new Node(1, "zhangke1");
Node zhangke2 = new Node(2, "zhangke2");
Node zhangke3 = new Node(3, "zhangke3");
Node zhangke4 = new Node(4, "zhangke4");
Node zhangke5 = new Node(5,"zhangke5");
zhangke1.setRight(zhangke3);
zhangke1.setLeft(zhangke2);
zhangke3.setRight(zhangke4);
zhangke3.setLeft(zhangke5);
binaryTree binaryTree1 = new binaryTree();
binaryTree1.setRoot(zhangke1);
System.out.println("前序遍历:");
binaryTree1.preOrder();
System.out.println();
System.out.println("中序遍历:");
binaryTree1.midOrder();
System.out.println();
System.out.println("后序遍历:");
binaryTree1.postOrder();
binaryTree1.deleteNode(5);
System.out.println("前序遍历:");
binaryTree1.preOrder();
System.out.println();
System.out.println("中序遍历:");
binaryTree1.midOrder();
System.out.println();
System.out.println("后序遍历:");
binaryTree1.postOrder();
}
}
class binaryTree{
private Node root;
public void setRoot(Node root){
this.root=root;
}
public void preOrder(){
if (root != null) {
root.preOrder();
}else {
System.out.println("EMPTY");
}
}
public void midOrder(){
if (root != null) {
root.midOrder();
}else {
System.out.println("EMPTY");
}
}
public void postOrder(){
if (root != null) {
root.postOrder();
}else {
System.out.println("EMPTY");
}
}
public Node preOrderSearch(int no){
if(root!=null){
return root.preOrderSearch(no);
}else {
return null;
}
}
public Node midOrderSearch(int no){
if(root!=null){
return root.midOrderSearch(no);
}else {
return null;
}
}
public Node postOrderSearch(int no){
if(root!=null){
return root.postOrderSearch(no);
}else {
return null;
}
}
public void deleteNode(int no) {
if(this.root!=null){
//只有一个root
if(root.getNo()==no){
root=null;
}else {
root.deleteNode(no);
}
}else {
System.out.println("空树!");
}
}
}
class Node{
private int no;
private String name;
private Node left;
private Node right;
public Node(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Node getLeft() {
return left;
}
public void setLeft(Node left) {
this.left = left;
}
public Node getRight() {
return right;
}
public void setRight(Node right) {
this.right = right;
}
@Override
public String toString() {
return "Node{" +
"no=" + no +
", name='" + name + '\''
+
'}';
}
public void deleteNode(int no){
if(this.left!=null&&this.left.no==no){
this.left=null;
return;
}
if(this.right!=null&&this.right.no==no){
this.right=null;
return;
}
if(this.left!=null){
this.left.deleteNode(no);
}
if(this.right!=null){
this.right.deleteNode(no);
}
}
public void preOrder(){
System.out.println(this);
if (this.left != null) {
this.left.preOrder();
}
if (this.right != null) {
this.right.preOrder();
}
}
public void midOrder(){
if (this.left != null) {
this.left.midOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.midOrder();
}
}
public void postOrder(){
if (this.left != null) {
this.left.postOrder();
}
if (this.right != null) {
this.right.postOrder();
}
System.out.println(this);
}
//前序遍历查找
public Node preOrderSearch(int no){
System.out.println("1");
if(this.no==no){
return this;
}
tree.Node resNode = null;
if (this.left != null) {
resNode = this.left.preOrderSearch(no);
}
if(resNode!=null){
return resNode;
}
if (this.right != null) {
resNode = this.right.preOrderSearch(no);
}
//这里无论找不找得到 都要返回 找不到的话返回一个null
return resNode;
}
//中序遍历查找
public Node midOrderSearch(int no){
Node resNode = null;
if (this.left != null) {
resNode = this.left.midOrderSearch(no);
}
if(resNode!=null){
return resNode;
}
System.out.println("2");
if(this.no==no){
return this;
}
if (this.right != null) {
resNode = this.right.midOrderSearch(no);
}
//这里无论找不找得到 都要返回 找不到的话返回一个null
return resNode;
}
//后序遍历查找
public Node postOrderSearch(int no){
Node resNode = null;
if (this.left != null) {
resNode = this.left.postOrderSearch(no);
}
if(resNode!=null){
return resNode;
}
if (this.right != null) {
resNode = this.right.postOrderSearch(no);
}
if(resNode!=null){
return resNode;
}
System.out.println("3");
if(this.no==no){
return this;
}
return null;
}
}
顺序存储二叉树的概念
从数据存储来看,数组存储方式和树 的存储方式可以相互转换,即数组可 以转换成树,树也可以转换成数组 如下图所示:
要求:
下图的二叉树的结点,要求以数组 的方式来存放 arr : [1, 2, 3, 4, 5, 6, 6] 且在遍历数组 arr时,仍然可以以 前序遍历,中序遍历和后序遍历的 方式完成结点的遍历
顺序存储二叉树的特点:
顺序二叉树通常只考虑完全二叉树 第n个元素的左子节点为 2 * n + 1 第n个元素的右子节点为 2 * n + 2 第n个元素的父节点为 (n-1) / 2 n : 表示二叉树中的第几个元素(按0开始编号 如图所示)
顺序存储二叉树遍历 (堆排序会用到这个)
需求:
给你一个数组 {1,2,3,4,5,6,7},要求以二叉树前序遍历的方式进行遍历。 前序遍历的结果应当为 1,2,4,5,3,6,7
代码:
package tree;
public class shunxucunchu {
public static void main(String[] args) {
int []arr = {1,2,3,4,5,6,7};
arrayBinaryTree arrayBinaryTree1 = new arrayBinaryTree(arr);//1 2 4 5 3 6 7
arrayBinaryTree1.preOrder();
}
}
class arrayBinaryTree{
private int []arr;//存储结点的数组
public arrayBinaryTree(int[] arr) {
this.arr = arr;
}
//重载
public void preOrder(){
this.preOrder(0);
}
//编写一个方法完成顺序存储二叉树的前序遍历
public void preOrder(int index){//index 数组下标
if(arr==null||arr.length==0){
return;
}
//输出当前元素
System.out.println(arr[index]);
//向左递归
if((index*2+1)<arr.length)
preOrder(index*2+1);
//向右递归
if((index*2+2)<arr.length)
preOrder(index*2+2);
}
}
线索化二叉树
①n个结点的二叉链表中含有n+1 【公式 2n-(n-1)=n+1】 个空指针域。利用二叉链表中的空指针域,存放指向该结点在某种遍历次序下的前驱和后继结点的指针(这种附加的指针称为"线索")
②这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。
③根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种
一个结点的前一个结点,称为前驱结点
一个结点的后一个结点,称为后继结点
线索二叉树应用案例
将下面的二叉树,进行中序线索二叉树。
中序遍历的数列为 {8, 3, 10, 1, 14, 6}
tips:当线索化二叉树后,Node节点的 属性 left 和 right ,有如下情况:
①left 指向的是左子树,也可能是指向的前驱节点. 比如 ① 节点 left 指向的左子树, 而 ⑩ 节点的 left 指向的就是前驱节点.
②right指向的是右子树,也可能是指向后继节点,比如 ① 节点right 指向的是右子树,而⑩ 节点的right 指向的是后继节点.
代码:
package tree.xianshu;
public class ThreadedBinaryTree {
public static void main(String[] args) {
Node node1 = new Node(1, "1");
Node node2 = new Node(3, "3");
Node node3 = new Node(4, "6");
Node node4 = new Node(8, "8");
Node node5 = new Node(10, "10");
Node node6 = new Node(14, "14");
node1.setLeft(node2);
node1.setRight(node3);
node2.setLeft(node4);
node2.setRight(node5);
node3.setLeft(node6);
threadBinaryTree threadBinaryTree = new threadBinaryTree();
threadBinaryTree.setRoot(node1);
threadBinaryTree.threadedNodes();
//测试:以node5为例子
Node left = node5.getLeft();
Node right = node5.getRight();
System.out.println(left);
System.out.println(right);
}
}
class threadBinaryTree{
private Node root;
//为了实现先做华 需要创建一个指向当前结点的前驱结点
//pre在递归进行线索化时 总保留前一个结点(前驱结点)
private Node pre = null;
public void setRoot(Node root){
this.root=root;
}
public void threadedNodes(){
this.threadedNodes(root);
}
//编写对二叉树进行中序线索化的方法
public void threadedNodes(Node node){//node就是当前需要线索化的结点
if (node==null){
return;
}
//1.先线索化左子树(对应中序遍历)
threadedNodes(node.getLeft());
//2.线索化当前结点[有难度]
//处理当前结点的前驱结点
/*
以结点8为例子
8.left = null;
8.leftType=1;
*/
if(node.getLeft()==null){
//让当前结点的左指针指向前驱结点
node.setLeft(pre);
node.setLeftType(1);
}
//每处理一个结点后 让当前结点是下一个结点的前驱结点
//处理后继结点 放在下一次循环中 让当前结点作为下次一循环中结点的前驱结点
if(pre!=null&&pre.getRight()==null){
pre.setRight(node);
pre.setRightType(1);
}
pre = node;
//3.再线索化右子树
threadedNodes(node.getRight());
}
public void preOrder(){
if (root != null) {
root.preOrder();
}else {
System.out.println("EMPTY");
}
}
public void midOrder(){
if (root != null) {
root.midOrder();
}else {
System.out.println("EMPTY");
}
}
public void postOrder(){
if (root != null) {
root.postOrder();
}else {
System.out.println("EMPTY");
}
}
public Node preOrderSearch(int no){
if(root!=null){
return root.preOrderSearch(no);
}else {
return null;
}
}
public Node midOrderSearch(int no){
if(root!=null){
return root.midOrderSearch(no);
}else {
return null;
}
}
public Node postOrderSearch(int no){
if(root!=null){
return root.postOrderSearch(no);
}else {
return null;
}
}
public void deleteNode(int no) {
if(this.root!=null){
//只有一个root
if(root.getNo()==no){
root=null;
}else {
root.deleteNode(no);
}
}else {
System.out.println("空树!");
}
}
}
class Node{
private int no;
private String name;
private Node left;
private Node right;
private int leftType;//若=0 指向左子树 若=1指向前驱结点
private int rightType;//若=0 指向右子树 若=1指向后继结点
public Node(int no, String name) {
this.no = no;
this.name = name;
}
public int getLeftType() {
return leftType;
}
public void setLeftType(int leftType) {
this.leftType = leftType;
}
public int getRightType() {
return rightType;
}
public void setRightType(int rightType) {
this.rightType = rightType;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Node getLeft() {
return left;
}
public void setLeft(Node left) {
this.left = left;
}
public Node getRight() {
return right;
}
public void setRight(Node right) {
this.right = right;
}
@Override
public String toString() {
return "Node{" +
"no=" + no +
", name='" + name + '\''
+
'}';
}
public void deleteNode(int no){
if(this.left!=null&&this.left.no==no){
this.left=null;
return;
}
if(this.right!=null&&this.right.no==no){
this.right=null;
return;
}
if(this.left!=null){
this.left.deleteNode(no);
}
if(this.right!=null){
this.right.deleteNode(no);
}
}
public void preOrder(){
System.out.println(this);
if (this.left != null) {
this.left.preOrder();
}
if (this.right != null) {
this.right.preOrder();
}
}
public void midOrder(){
if (this.left != null) {
this.left.midOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.midOrder();
}
}
public void postOrder(){
if (this.left != null) {
this.left.postOrder();
}
if (this.right != null) {
this.right.postOrder();
}
System.out.println(this);
}
//前序遍历查找
public Node preOrderSearch(int no){
System.out.println("1");
if(this.no==no){
return this;
}
Node resNode = null;
if (this.left != null) {
resNode = this.left.preOrderSearch(no);
}
if(resNode!=null){
return resNode;
}
if (this.right != null) {
resNode = this.right.preOrderSearch(no);
}
//这里无论找不找得到 都要返回 找不到的话返回一个null
return resNode;
}
//中序遍历查找
public Node midOrderSearch(int no){
Node resNode = null;
if (this.left != null) {
resNode = this.left.midOrderSearch(no);
}
if(resNode!=null){
return resNode;
}
System.out.println("2");
if(this.no==no){
return this;
}
if (this.right != null) {
resNode = this.right.midOrderSearch(no);
}
//这里无论找不找得到 都要返回 找不到的话返回一个null
return resNode;
}
//后序遍历查找
public Node postOrderSearch(int no){
Node resNode = null;
if (this.left != null) {
resNode = this.left.postOrderSearch(no);
}
if(resNode!=null){
return resNode;
}
if (this.right != null) {
resNode = this.right.postOrderSearch(no);
}
if(resNode!=null){
return resNode;
}
System.out.println("3");
if(this.no==no){
return this;
}
return null;
}
}
遍历线索化二叉树
说明:对前面的中序线索化的二叉树, 进行遍历
分析:因为线索化后,各个结点指向有变化,因此原来的遍历方式不能使用,这时需要使用新的方式遍历线索化二叉树,各个节点可以通过线型方式遍历,因此无需使用递归方式,这样也提高了遍历的效率。 遍历的次序应当和中序遍历保持一致。
tips:比如原来遍历退出递归的==null 现在都不成立了
代码:
//遍历线索化二叉树
public void threadedList(){
//定义一个变量 存储当前遍历的结点 从root开始
Node node = root;
while (node!=null){
//循环找到的第一个leftType==1的结点 第一个找到的就是结点"8"
//后面随着遍历的变化而变化 不是固定的 因为当left==1时候
//说明该结点是按照线索化处理后的邮箱结点
while (node.getLeftType()==0){
node=node.getLeft();
}
//打印当前结点
System.out.println(node);
//若当前结点的右指针指向的是后继几点 就一直输出
while (node.getRightType()==1){
node=node.getRight();
System.out.println(node);
}
//替换这个遍历的结点
node= node.getRight();
}
}