Java数据结构和算法---二叉树

·二叉树
     
   为什么需要树这种数据结构
        ①数组存储方式的分析
           优点:通过下标方式访问元素,速度快。对于有序数组,还可使用二分查找提高检索速度。            缺点:如果要检索具体某个值,或者插入值(按一定顺序)会整体移动,效率较低
        ②链式存储方式的分析
           优点:在一定程度上对数组存储方式有优化(比如:插入一个数值节点,只需要将插入节点,链接到链表中即可, 删除效率也很好)。
           缺点:在进行检索时,效率仍然较低,比如(检索某个值,需要从头节点开始遍历) 
        ③树存储方式的分析 能提高数据存储,读取的效率,  比如利用 二叉排序树(Binary Sort Tree),既可以保证数据的检索速度,同时也可以保证数据的插入,删除,修改的速度。
        案例: [7, 3, 10, 1, 5, 9, 12]


 二叉树的概念
        ①树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树。
        ②二叉树的子节点分为左节点和右节点。
        ③如果该二叉树的所有叶子节点都在最后一层,并且结点总数= 2^n -1 , n 为层数,则我们称为满二叉树。
        ④如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树

         完全二叉树 , 如果把 (61)节点删除, 就不是完全二叉树了,因为叶子节点不连续了

二叉树的遍历
 
       前序遍历: 先输出父节点,再遍历左子树和右子树
        中序遍历: 先遍历左子树,再输出父节点,再遍历右子树
        后序遍历: 先遍历左子树,再遍历右子树,最后输出父节点
小结: 看输出父节点的顺序,就确定是前序,中序还是后序

代码:

package tree;

public class BinaryTree1 {
    public static void main(String[] args) {
        Node zhangke1 = new Node(1, "zhangke1");
        Node zhangke2 = new Node(2, "zhangke2");
        Node zhangke3 = new Node(3, "zhangke3");
        Node zhangke4 = new Node(4, "zhangke4");
        Node zhangke5 = new Node(5,"zhangke5");
        zhangke1.right=zhangke3;
        zhangke1.left=zhangke2;
        zhangke3.right=zhangke4;
        zhangke3.left=zhangke5;
        binaryTree binaryTree1 = new binaryTree();
        binaryTree1.setRoot(zhangke1);
        binaryTree1.preOrder();
        System.out.println();
        binaryTree1.midOrder();
        System.out.println();
        binaryTree1.postOrder();
    }
}
class binaryTree{
   private Node root;
   public void setRoot(Node root){
       this.root=root;
   }
   public void preOrder(){
       if (root != null) {
           root.preOrder();
       }else {
           System.out.println("EMPTY");
       }
   }
   public void midOrder(){
        if (root != null) {
            root.midOrder();
        }else {
            System.out.println("EMPTY");
        }
    }
    public void postOrder(){
        if (root != null) {
            root.postOrder();
        }else {
            System.out.println("EMPTY");
        }
    }
}
class Node{
    private int no;
    private String name;
    Node left;
    Node right;

    public Node(int no, String name) {
        this.no = no;
        this.name = name;
    }

    public int getNo() {
        return no;
    }

    public void setNo(int no) {
        this.no = no;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public Node getLeft() {
        return left;
    }

    public void setLeft(Node left) {
        this.left = left;
    }

    public Node getRight() {
        return right;
    }

    public void setRight(Node right) {
        this.right = right;
    }

    @Override
    public String toString() {
        return "Node{" +
                "no=" + no +
                ", name='" + name + '\''
                +
                '}';
    }
    public void preOrder(){
        System.out.println(this);
        if (this.left != null) {
            this.left.preOrder();
        }
        if (this.right != null) {
            this.right.preOrder();
        }
    }
    public void midOrder(){
        if (this.left != null) {
            this.left.midOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.midOrder();
        }
    }
    public void postOrder(){
        if (this.left != null) {
            this.left.postOrder();
        }
        if (this.right != null) {
            this.right.postOrder();
        }
        System.out.println(this);
    }
}


二叉树-查找指定节点

 分别利用前中后序查找 找5: 前序比较了4次 中序比较了3次 后序比较了2次


 代码: Node.left和Node.right最好定义为private然后通过set/get来设置/获取

package tree;

public class BinaryTree1 {
    public static void main(String[] args) {
        Node zhangke1 = new Node(1, "zhangke1");
        Node zhangke2 = new Node(2, "zhangke2");
        Node zhangke3 = new Node(3, "zhangke3");
        Node zhangke4 = new Node(4, "zhangke4");
        Node zhangke5 = new Node(5,"zhangke5");
        zhangke1.right=zhangke3;
        zhangke1.left=zhangke2;
        zhangke3.right=zhangke4;
        zhangke3.left=zhangke5;
        binaryTree binaryTree1 = new binaryTree();
        binaryTree1.setRoot(zhangke1);
        System.out.println("前序遍历:");
        binaryTree1.preOrder();
        System.out.println();
        System.out.println("中序遍历:");
        binaryTree1.midOrder();
        System.out.println();
        System.out.println("后序遍历:");
        binaryTree1.postOrder();

        System.out.println("前序遍历查找5:");//四次
        Node node = binaryTree1.preOrderSearch(5);
        if(node!=null){
            System.out.println("找到了"+node.toString());
        }else {
            System.out.println("没找到");
        }
        System.out.println("中序遍历查找5:");//三次
        Node node1 = binaryTree1.midOrderSearch(5);
        if(node1!=null){
            System.out.println("找到了"+node.toString());
        }else {
            System.out.println("没找到");
        }
        System.out.println("后序遍历查找5:");//两次
        Node node2 = binaryTree1.postOrderSearch(5);
        if(node1!=null){
            System.out.println("找到了"+node.toString());
        }else {
            System.out.println("没找到");
        }

    }
}
class binaryTree{
   private Node root;
   public void setRoot(Node root){
       this.root=root;
   }
   public void preOrder(){
       if (root != null) {
           root.preOrder();
       }else {
           System.out.println("EMPTY");
       }
   }
   public void midOrder(){
        if (root != null) {
            root.midOrder();
        }else {
            System.out.println("EMPTY");
        }
    }
    public void postOrder(){
        if (root != null) {
            root.postOrder();
        }else {
            System.out.println("EMPTY");
        }
    }
    public Node preOrderSearch(int no){
       if(root!=null){
           return root.preOrderSearch(no);
       }else {
           return null;
       }
    }

    public Node midOrderSearch(int no){
        if(root!=null){
            return root.midOrderSearch(no);
        }else {
            return null;
        }
    }

    public Node postOrderSearch(int no){
        if(root!=null){
            return root.postOrderSearch(no);
        }else {
            return null;
        }
    }
}
class Node{
    private int no;
    private String name;
    Node left;
    Node right;

    public Node(int no, String name) {
        this.no = no;
        this.name = name;
    }

    public int getNo() {
        return no;
    }

    public void setNo(int no) {
        this.no = no;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public Node getLeft() {
        return left;
    }

    public void setLeft(Node left) {
        this.left = left;
    }

    public Node getRight() {
        return right;
    }

    public void setRight(Node right) {
        this.right = right;
    }

    @Override
    public String toString() {
        return "Node{" +
                "no=" + no +
                ", name='" + name + '\''
                +
                '}';
    }
    public void preOrder(){
        System.out.println(this);
        if (this.left != null) {
            this.left.preOrder();
        }
        if (this.right != null) {
            this.right.preOrder();
        }
    }
    public void midOrder(){
        if (this.left != null) {
            this.left.midOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.midOrder();
        }
    }
    public void postOrder(){
        if (this.left != null) {
            this.left.postOrder();
        }
        if (this.right != null) {
            this.right.postOrder();
        }
        System.out.println(this);
    }


    //前序遍历查找
    public Node preOrderSearch(int no){
        System.out.println("1");
        if(this.no==no){
            return this;
        }
        Node resNode = null;
        if (this.left != null) {
            resNode = this.left.preOrderSearch(no);
        }
        if(resNode!=null){
            return resNode;
        }
        if (this.right != null) {
            resNode = this.right.preOrderSearch(no);
        }
       //这里无论找不找得到 都要返回 找不到的话返回一个null
            return resNode;

    }
    //中序遍历查找
    public Node midOrderSearch(int no){
        Node resNode = null;
        if (this.left != null) {
            resNode = this.left.midOrderSearch(no);
        }
        if(resNode!=null){
            return resNode;
        }
        System.out.println("2");
        if(this.no==no){
            return this;
        }
        if (this.right != null) {
            resNode = this.right.midOrderSearch(no);
        }
        //这里无论找不找得到 都要返回 找不到的话返回一个null
        return resNode;

    }
    //后序遍历查找
    public Node postOrderSearch(int no){

        Node resNode = null;
        if (this.left != null) {
            resNode = this.left.postOrderSearch(no);
        }
        if(resNode!=null){
            return resNode;
        }
        if (this.right != null) {
            resNode = this.right.postOrderSearch(no);
        }
        if(resNode!=null){
            return resNode;
        }
        System.out.println("3");
        if(this.no==no){
            return this;
        }
        return null;
    }
}

二叉树-删除节点

        如果删除的节点是叶子节点,则删除该节点
        如果删除的节点是非叶子节点,则删除该子树(临时要求 后面会优化).

        写代码测试,删除掉 5号叶子节点 和 3号子树.

代码:

package tree;

public class BinaryTree1 {
    public static void main(String[] args) {
        Node zhangke1 = new Node(1, "zhangke1");
        Node zhangke2 = new Node(2, "zhangke2");
        Node zhangke3 = new Node(3, "zhangke3");
        Node zhangke4 = new Node(4, "zhangke4");
        Node zhangke5 = new Node(5,"zhangke5");
        zhangke1.setRight(zhangke3);
        zhangke1.setLeft(zhangke2);
        zhangke3.setRight(zhangke4);
        zhangke3.setLeft(zhangke5);
        binaryTree binaryTree1 = new binaryTree();
        binaryTree1.setRoot(zhangke1);
        System.out.println("前序遍历:");
        binaryTree1.preOrder();
        System.out.println();
        System.out.println("中序遍历:");
        binaryTree1.midOrder();
        System.out.println();
        System.out.println("后序遍历:");
        binaryTree1.postOrder();

        binaryTree1.deleteNode(5);
        System.out.println("前序遍历:");
        binaryTree1.preOrder();
        System.out.println();
        System.out.println("中序遍历:");
        binaryTree1.midOrder();
        System.out.println();
        System.out.println("后序遍历:");
        binaryTree1.postOrder();

    }
}
class binaryTree{
   private Node root;
   public void setRoot(Node root){
       this.root=root;
   }
   public void preOrder(){
       if (root != null) {
           root.preOrder();
       }else {
           System.out.println("EMPTY");
       }
   }
   public void midOrder(){
        if (root != null) {
            root.midOrder();
        }else {
            System.out.println("EMPTY");
        }
    }
    public void postOrder(){
        if (root != null) {
            root.postOrder();
        }else {
            System.out.println("EMPTY");
        }
    }
    public Node preOrderSearch(int no){
       if(root!=null){
           return root.preOrderSearch(no);
       }else {
           return null;
       }
    }

    public Node midOrderSearch(int no){
        if(root!=null){
            return root.midOrderSearch(no);
        }else {
            return null;
        }
    }

    public Node postOrderSearch(int no){
        if(root!=null){
            return root.postOrderSearch(no);
        }else {
            return null;
        }
    }

    public void deleteNode(int no) {
        if(this.root!=null){
            //只有一个root
            if(root.getNo()==no){
                root=null;
            }else {
                root.deleteNode(no);
            }
        }else {
            System.out.println("空树!");
        }
    }
}
class Node{

    private int no;
    private String name;
    private Node left;
    private Node right;

    public Node(int no, String name) {
        this.no = no;
        this.name = name;
    }

    public int getNo() {
        return no;
    }

    public void setNo(int no) {
        this.no = no;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public Node getLeft() {
        return left;
    }

    public void setLeft(Node left) {
        this.left = left;
    }

    public Node getRight() {
        return right;
    }

    public void setRight(Node right) {
        this.right = right;
    }

    @Override
    public String toString() {
        return "Node{" +
                "no=" + no +
                ", name='" + name + '\''
                +
                '}';
    }

    public void deleteNode(int no){
        if(this.left!=null&&this.left.no==no){
            this.left=null;
            return;
        }
        if(this.right!=null&&this.right.no==no){
            this.right=null;
            return;
        }
        if(this.left!=null){
            this.left.deleteNode(no);
        }
        if(this.right!=null){
            this.right.deleteNode(no);
        }
    }
    public void preOrder(){
        System.out.println(this);
        if (this.left != null) {
            this.left.preOrder();
        }
        if (this.right != null) {
            this.right.preOrder();
        }
    }
    public void midOrder(){
        if (this.left != null) {
            this.left.midOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.midOrder();
        }
    }
    public void postOrder(){
        if (this.left != null) {
            this.left.postOrder();
        }
        if (this.right != null) {
            this.right.postOrder();
        }
        System.out.println(this);
    }


    //前序遍历查找
    public Node preOrderSearch(int no){
        System.out.println("1");
        if(this.no==no){
            return this;
        }
        tree.Node resNode = null;
        if (this.left != null) {
            resNode = this.left.preOrderSearch(no);
        }
        if(resNode!=null){
            return resNode;
        }
        if (this.right != null) {
            resNode = this.right.preOrderSearch(no);
        }
       //这里无论找不找得到 都要返回 找不到的话返回一个null
            return resNode;

    }
    //中序遍历查找
    public Node midOrderSearch(int no){
        Node resNode = null;
        if (this.left != null) {
            resNode = this.left.midOrderSearch(no);
        }
        if(resNode!=null){
            return resNode;
        }
        System.out.println("2");
        if(this.no==no){
            return this;
        }
        if (this.right != null) {
            resNode = this.right.midOrderSearch(no);
        }
        //这里无论找不找得到 都要返回 找不到的话返回一个null
        return resNode;

    }
    //后序遍历查找
    public Node postOrderSearch(int no){

        Node resNode = null;
        if (this.left != null) {
            resNode = this.left.postOrderSearch(no);
        }
        if(resNode!=null){
            return resNode;
        }
        if (this.right != null) {
            resNode = this.right.postOrderSearch(no);
        }
        if(resNode!=null){
            return resNode;
        }
        System.out.println("3");
        if(this.no==no){
            return this;
        }
        return null;
    }
}

顺序存储二叉树的概念 
        
从数据存储来看,数组存储方式和树 的存储方式可以相互转换,即数组可 以转换成树,树也可以转换成数组  如下图所示:

        要求:
                下图的二叉树的结点,要求以数组 的方式来存放 arr : [1, 2, 3, 4, 5, 6, 6] 且在遍历数组 arr时,仍然可以以 前序遍历,中序遍历和后序遍历的 方式完成结点的遍历

        顺序存储二叉树的特点:
                顺序二叉树通常只考虑完全二叉树 第n个元素的左子节点为  2 * n + 1 第n个元素的右子节点为  2 * n + 2 第n个元素的父节点为  (n-1) / 2 n : 表示二叉树中的第几个元素(按0开始编号 如图所示)

 顺序存储二叉树遍历 (堆排序会用到这个)
     
   需求:
                给你一个数组 {1,2,3,4,5,6,7},要求以二叉树前序遍历的方式进行遍历。 前序遍历的结果应当为 1,2,4,5,3,6,7
        代码:

package tree;

public class shunxucunchu {
    public static void main(String[] args) {
        int []arr = {1,2,3,4,5,6,7};
        arrayBinaryTree arrayBinaryTree1 = new arrayBinaryTree(arr);//1 2 4 5 3 6 7
        arrayBinaryTree1.preOrder();
    }
}
class arrayBinaryTree{
    private int []arr;//存储结点的数组

    public arrayBinaryTree(int[] arr) {
        this.arr = arr;
    }
    //重载
    public void preOrder(){
        this.preOrder(0);
    }
    //编写一个方法完成顺序存储二叉树的前序遍历
    public void preOrder(int index){//index 数组下标
        if(arr==null||arr.length==0){
            return;
        }
        //输出当前元素
        System.out.println(arr[index]);
        //向左递归
        if((index*2+1)<arr.length)
                preOrder(index*2+1);
        //向右递归
        if((index*2+2)<arr.length)
                preOrder(index*2+2);
    }
}


线索化二叉树

        ①n个结点的二叉链表中含有n+1  【公式 2n-(n-1)=n+1】 个空指针域。利用二叉链表中的空指针域,存放指向该结点在某种遍历次序下的前驱和后继结点的指针(这种附加的指针称为"线索")         
        ②这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。
        ③根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种
        一个结点的前一个结点,称为前驱结点
        一个结点的后一个结点,称为后继结点

线索二叉树应用案例
        
将下面的二叉树,进行中序线索二叉树。
                中序遍历的数列为 {8, 3, 10, 1, 14, 6}

         tips:当线索化二叉树后,Node节点的 属性 left 和 right ,有如下情况:
                ①left 指向的是左子树,也可能是指向的前驱节点. 比如 ① 节点 left 指向的左子树, 而 ⑩ 节点的 left 指向的就是前驱节点.
                ②right指向的是右子树,也可能是指向后继节点,比如 ① 节点right 指向的是右子树,而⑩ 节点的right 指向的是后继节点. 

代码:

package tree.xianshu;

public class ThreadedBinaryTree {
    public static void main(String[] args) {
        Node node1 = new Node(1, "1");
        Node node2 = new Node(3, "3");
        Node node3 = new Node(4, "6");
        Node node4 = new Node(8, "8");
        Node node5 = new Node(10, "10");
        Node node6 = new Node(14, "14");

        node1.setLeft(node2);
        node1.setRight(node3);
        node2.setLeft(node4);
        node2.setRight(node5);
        node3.setLeft(node6);
        threadBinaryTree threadBinaryTree = new threadBinaryTree();
        threadBinaryTree.setRoot(node1);
        threadBinaryTree.threadedNodes();

        //测试:以node5为例子
        Node left = node5.getLeft();
        Node right = node5.getRight();
        System.out.println(left);
        System.out.println(right);
    }
}

class threadBinaryTree{
    private Node root;
    //为了实现先做华 需要创建一个指向当前结点的前驱结点
    //pre在递归进行线索化时 总保留前一个结点(前驱结点)
    private Node pre = null;
    public void setRoot(Node root){
        this.root=root;
    }
    public void threadedNodes(){
        this.threadedNodes(root);
    }
    //编写对二叉树进行中序线索化的方法
    public void threadedNodes(Node node){//node就是当前需要线索化的结点
        if (node==null){
            return;
        }
        //1.先线索化左子树(对应中序遍历)
        threadedNodes(node.getLeft());
        //2.线索化当前结点[有难度]
        //处理当前结点的前驱结点
        /*
        以结点8为例子
             8.left = null;
             8.leftType=1;
         */
        if(node.getLeft()==null){
            //让当前结点的左指针指向前驱结点
            node.setLeft(pre);
            node.setLeftType(1);
        }
        //每处理一个结点后 让当前结点是下一个结点的前驱结点

        //处理后继结点 放在下一次循环中 让当前结点作为下次一循环中结点的前驱结点
        if(pre!=null&&pre.getRight()==null){
            pre.setRight(node);
            pre.setRightType(1);
        }
        pre = node;
        //3.再线索化右子树
        threadedNodes(node.getRight());
    }


    public void preOrder(){
        if (root != null) {
            root.preOrder();
        }else {
            System.out.println("EMPTY");
        }
    }
    public void midOrder(){
        if (root != null) {
            root.midOrder();
        }else {
            System.out.println("EMPTY");
        }
    }
    public void postOrder(){
        if (root != null) {
            root.postOrder();
        }else {
            System.out.println("EMPTY");
        }
    }
    public Node preOrderSearch(int no){
        if(root!=null){
            return root.preOrderSearch(no);
        }else {
            return null;
        }
    }

    public Node midOrderSearch(int no){
        if(root!=null){
            return root.midOrderSearch(no);
        }else {
            return null;
        }
    }

    public Node postOrderSearch(int no){
        if(root!=null){
            return root.postOrderSearch(no);
        }else {
            return null;
        }
    }

    public void deleteNode(int no) {
        if(this.root!=null){
            //只有一个root
            if(root.getNo()==no){
                root=null;
            }else {
                root.deleteNode(no);
            }
        }else {
            System.out.println("空树!");
        }
    }
}



class Node{
    private int no;
    private String name;
    private Node left;
    private Node right;

    private int leftType;//若=0 指向左子树 若=1指向前驱结点
    private int rightType;//若=0 指向右子树 若=1指向后继结点

    public Node(int no, String name) {
        this.no = no;
        this.name = name;
    }

    public int getLeftType() {
        return leftType;
    }

    public void setLeftType(int leftType) {
        this.leftType = leftType;
    }

    public int getRightType() {
        return rightType;
    }

    public void setRightType(int rightType) {
        this.rightType = rightType;
    }

    public int getNo() {
        return no;
    }

    public void setNo(int no) {
        this.no = no;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public Node getLeft() {
        return left;
    }

    public void setLeft(Node left) {
        this.left = left;
    }

    public Node getRight() {
        return right;
    }

    public void setRight(Node right) {
        this.right = right;
    }

    @Override
    public String toString() {
        return "Node{" +
                "no=" + no +
                ", name='" + name + '\''
                +
                '}';
    }
    public void deleteNode(int no){
        if(this.left!=null&&this.left.no==no){
            this.left=null;
            return;
        }
        if(this.right!=null&&this.right.no==no){
            this.right=null;
            return;
        }
        if(this.left!=null){
            this.left.deleteNode(no);
        }
        if(this.right!=null){
            this.right.deleteNode(no);
        }
    }
    public void preOrder(){
        System.out.println(this);
        if (this.left != null) {
            this.left.preOrder();
        }
        if (this.right != null) {
            this.right.preOrder();
        }
    }
    public void midOrder(){
        if (this.left != null) {
            this.left.midOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.midOrder();
        }
    }
    public void postOrder(){
        if (this.left != null) {
            this.left.postOrder();
        }
        if (this.right != null) {
            this.right.postOrder();
        }
        System.out.println(this);
    }


    //前序遍历查找
    public Node preOrderSearch(int no){
        System.out.println("1");
        if(this.no==no){
            return this;
        }
        Node resNode = null;
        if (this.left != null) {
            resNode = this.left.preOrderSearch(no);
        }
        if(resNode!=null){
            return resNode;
        }
        if (this.right != null) {
            resNode = this.right.preOrderSearch(no);
        }
        //这里无论找不找得到 都要返回 找不到的话返回一个null
        return resNode;

    }
    //中序遍历查找
    public Node midOrderSearch(int no){
        Node resNode = null;
        if (this.left != null) {
            resNode = this.left.midOrderSearch(no);
        }
        if(resNode!=null){
            return resNode;
        }
        System.out.println("2");
        if(this.no==no){
            return this;
        }
        if (this.right != null) {
            resNode = this.right.midOrderSearch(no);
        }
        //这里无论找不找得到 都要返回 找不到的话返回一个null
        return resNode;

    }
    //后序遍历查找
    public Node postOrderSearch(int no){

        Node resNode = null;
        if (this.left != null) {
            resNode = this.left.postOrderSearch(no);
        }
        if(resNode!=null){
            return resNode;
        }
        if (this.right != null) {
            resNode = this.right.postOrderSearch(no);
        }
        if(resNode!=null){
            return resNode;
        }
        System.out.println("3");
        if(this.no==no){
            return this;
        }
        return null;
    }
}


遍历线索化二叉树
        说明:
对前面的中序线索化的二叉树, 进行遍历
        分析:因为线索化后,各个结点指向有变化,因此原来的遍历方式不能使用,这时需要使用新的方式遍历线索化二叉树,各个节点可以通过线型方式遍历,因此无需使用递归方式,这样也提高了遍历的效率。 遍历的次序应当和中序遍历保持一致。
                tips:比如原来遍历退出递归的==null  现在都不成立了
代码:

   //遍历线索化二叉树
    public void threadedList(){
        //定义一个变量 存储当前遍历的结点 从root开始
        Node node = root;
        while (node!=null){
            //循环找到的第一个leftType==1的结点 第一个找到的就是结点"8"
            //后面随着遍历的变化而变化 不是固定的 因为当left==1时候
            //说明该结点是按照线索化处理后的邮箱结点
            while (node.getLeftType()==0){
                node=node.getLeft();
            }
            //打印当前结点
            System.out.println(node);
            //若当前结点的右指针指向的是后继几点 就一直输出
            while (node.getRightType()==1){
                node=node.getRight();
                System.out.println(node);
            }
            //替换这个遍历的结点
            node= node.getRight();
        }
    }


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值