自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(154)
  • 问答 (2)
  • 收藏
  • 关注

原创 如何判断一个语言数据集是否足够大,干净?

2.

2025-06-19 12:18:53 400

原创 加分二叉树

设一个n个节点的二叉树tree的中序遍历为123n,其中数字123n为节点编号。每个节点都有一个分数(均为正整数),记第i个节点的分数为di​tree及它的每个子树都有一个加分,任一棵子树subtree(也包含treesubtree的左子树的加分×subtree的右子树的加分subtree的根的分数。若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。试求一棵符合中序遍历为123n且加分最高的二叉树tree。要求输出。

2025-06-11 15:42:47 949

原创 量子语言模型——where to go

即一旦量子设备成熟(如通用量子计算机 QPU > 1000 qubits + 纠错稳定),我们就有机会把某些 NLP 问题从 O(n2)O(n^2)O(n2) 复杂度降低到 O(log⁡n)O(\log n)O(logn)。比如,很多 OpenAI、Anthropic 的研究者在分析 LLM 行为时,常会构造一个简化的 n-gram 模拟器或微型 Transformer,用来。n-gram / 轻量 RNN 仍在嵌入式系统、边缘设备、芯片端使用(如语音指令识别、车载系统、机器人低功耗识别模块)。

2025-06-01 15:07:24 545

原创 关于平均场理论

平均场理论通过忽略粒子间的关联性(高阶项),将复杂多体问题简化为单体问题。这一近似在弱相互作用系统中表现良好,但在强关联、临界或拓扑有序系统中严重失效。理解其忽略的关联项是分析模型适用性的关键。平均场理论(Mean-Field Theory, MFT)通过将多体系统中的复杂相互作用简化为一个“平均场”,使每个粒子独立地响应这个场,从而大幅降低计算复杂度。平均场理论(Mean-Field Theory, MFT)

2025-05-27 11:25:35 507

原创 密度矩阵重整化群——DMRG

是一种强有力的数值方法,用于研究低维强相互作用量子系统的基态和低激发态性质,特别是在中表现出极高的精度。DMRG 是一种变分算法,它通过保留最相关的量子态(以密度矩阵为准则)来近似处理指数级增长的希尔伯特空间维度,从而高效地逼近系统的基态。

2025-05-26 18:43:51 1064

原创 弦序参量(SOP)

传统局域序参量(如铁磁体的磁化强度)无法描述某些量子相(如Haldane相、自旋液体),因为这些相没有自发的对称性破缺,但具有拓扑或长程纠缠特性。通过测量动态结构因子的响应,间接推断弦序的存在(如在一维Ni(C2​H8​N2​)2​NO2​ClO4​化合物中观测到Haldane相的弦序)。与传统的局域序参量(如磁化强度、超导序参量)不同,弦序参量通过测量沿一维系统某路径上的算符累积关联,揭示系统的。弦序参量为理解无传统对称性破缺的量子相提供了关键工具,尤其在拓扑量子计算和量子信息领域具有重要意义。

2025-05-25 22:10:44 758

原创 关于大语言模型的问答?

对于每个令牌,我们根据其查询向量与序列中所有令牌的关键向量之间的相似性计算注意力权重,然后使用这些权重形成值的加权向量。在实现中,序列中的每个位置都具有与其他每个位置的相对距离(例如-2,-1、0,+1,+2)。这样,该模型会根据它们的分开来学习令牌之间的关系,而不仅仅是从固定的绝对位置学习。通过制定更好的提示,它几乎总是会导致更连贯,上下文准确且有用的响应,无论它是基本LLM模型(预训练)还是聊天模型(指令调整)。2.合并最频繁的对:该算法反复合并语料库中最常见的字符或子字,形成新的子字。

2025-05-22 19:23:49 794

原创 论文阅读--Logical quantum processor based on reconfigurable atom arrays

论文提出了一种基于可重构中性原子阵列的逻辑量子处理器,旨在通过量子纠错(QEC)和逻辑量子比特编码,解决物理量子比特的噪声限制问题。:利用三维[[8,3,2]]码实现48逻辑量子比特的快速扰乱(scrambling)电路,包含228个逻辑双量子比特门和48个逻辑CCZ门,跨熵基准(XEB)显著优于物理量子比特。:通过双拷贝测量技术提取纠缠熵和“魔力”(magic),验证了逻辑量子比特在模拟复杂量子系统(如黑洞扰乱)中的潜力。通过分区设计和AOD技术,实现了逻辑量子比特的并行操作,减少控制线路复杂度。

2025-05-19 10:21:36 1734 1

原创 论文阅读—HAMILTONIAN AND ALGEBRAIC THEORIES OF GAPPED BOUNDARIES IN TOPOLOGICAL PHASES OF MATTER

论文研究二维拓扑物态(如Kitaev量子双模型)中的能隙边界(gapped boundaries)。能隙边界是拓扑相与真空或其他拓扑相之间的界面,其激发态具有局域性和拓扑性质。体任意子通过带算符(ribbon operators)凝聚到边界,形成边界激发态。,作者实现了Dijkgraaf-Witten理论中的能隙边界,并分析了边界上的元激发(如任意子)。:与能隙边界一一对应,激发态由函子范畴Func(M,M) 的简单对象描述。:对应能隙边界,由可凝聚到真空的玻色型任意子组成,满足量子维度条件。

2025-05-16 20:02:15 228

原创 矩阵乘法的优化与复杂度分析

引入张量分解(Tensor Rank 理论),证明矩阵乘法的时间复杂度可降至 O(N2.375477)。≈O(N2.8074),核心是将 2×2 矩阵乘法从 8 次标量乘法优化为 7 次。通过优化张量分解的递归结构,将指数降至O(N2.3728639)。核心思想是将大矩阵拆分为更小的块,利用代数恒等式减少乘法次数。(1969):通过分块和递归,将时间复杂度降至。使用更精细的平衡策略,减少递归步骤中的乘法开销。:两个 N×N 矩阵相乘的朴素算法需要。时间(每个元素计算涉及 N 次乘加)

2025-05-14 20:42:17 599

原创 Karush-Kuhn-Tucker(KKT)

它是拉格朗日乘数法(Lagrange Multipliers)在不等式约束下的扩展,由Harold W. Kuhn和Albert W. Tucker于1951年提出(William Karush在1939年的硕士论文中已独立发现,故冠名KKT)。是数学优化理论中的一组必要条件,用于求解。

2025-05-14 15:03:52 647

原创 《量子语言模型研究综述》核心解读

实验显示在 Ad-hoc 检索任务中性能显著优于传统模型(如 BM25)。密度矩阵能建模词与词之间的依赖关系,超越传统概率模型的独立性假设。量子叠加态可表示多义词的多种含义(如“苹果”是水果或品牌)。:通过SVD降维建模语义相似性,但“相似性≠相关性”。:困惑度(PPL)指标优于 RNN/LSTM 模型。:依赖词向量表示,但对复杂语义依赖建模不足。:框架可扩展至检索、生成、问答等任务。:仅捕捉局部共现,忽略全局语义关联。:密度矩阵可捕获词与词的非局部依赖。:量子测量提供直观的概率生成机制。

2025-05-13 14:34:10 731

原创 常微分方程(OTD)和偏微分方程(PDE),以及混合精度

仅涉及一个自变量(如时间 t)的函数及其导数。

2025-05-12 22:20:22 1534

原创 大语言模型训练的两个阶段

deepspeed="configs/deepspeed_z3.json", # ZeRO-3优化。--volume-size 1000 \ # 1TB存储。report_to="none" # 本地不连接MLflow等。learning_rate=2e-5, # 比预训练低1-2个量级。:采用Spot Instance节省60-70%费用。网络隔离:断开外网连接进行air-gapped训练。数据加密:使用AES-256加密微调数据集。

2025-05-12 21:32:25 914

原创 关于大语言模型的困惑度(PPL)指标优势与劣势

PPL对分词方式敏感。例如,使用不同分词器(如BPE vs WordPiece)的模型之间无法直接比较PPL值,导致跨模型评估失效。大模型常通过强化学习(RLHF)、对比学习(如DPO)等方式微调,这些方法直接优化人类偏好或任务表现,而非最小化PPL。大模型需规避有害内容生成,相关评估(如毒性评分、偏见检测)无法通过PPL实现,需专门工具(如Perspective API)。支持图像、音频的多模态大模型(如Gemini、GPT-4o)需要跨模态对齐评估,而PPL仅适用于纯文本场景。

2025-05-12 21:16:18 2041

原创 Quantum convolutional nerual network

量子纠错通过。

2025-05-11 12:48:06 853

原创 范数的概念

向量中所有元素绝对值之和。

2025-05-09 12:19:05 1008

原创 矩阵分解——Cholesky分解,LU分解,LDLT分解

(Symmetric Positive Definite Matrix)的分解方法。对称但非正定 → 分解过程中会出现负数平方根,导致失败。在牛顿法、高斯-牛顿法中用于求解Hessian矩阵的逆。:复杂度为 O(n3/3),比LU分解快约2倍。其中,L 是下三角矩阵,对角线元素均为正数。:所有特征值为正,或对任意非零向量 x,满。生成相关随机变量(如蒙特卡洛模拟)。:仅需存储下三角部分(对称性)。高斯过程回归(协方差矩阵分解)。先解 Ly=b(前向替换),若 Ax=b,分解后解。(允许对角元为负)。

2025-05-09 11:50:06 1796

原创 数值分析——条件数

条件数(Condition Number)用于量化矩阵或函数对输入误差的敏感程度,反映问题的“良态”或“病态”特性。(Well-conditioned),输入的小扰动对输出的影响较小,数值计算稳定。(ill-conditioned),输入的小扰动会被显著放大,导致结果不可靠。在涉及矩阵运算、优化、逆问题或对误差敏感的数值计算中,均需关注条件数。避免直接求逆,改用矩阵分解(如Cholesky分解)。采用数值稳定算法(如QR分解、SVD分解)。使用正则化(如岭回归,添加 λ 项)。

2025-05-08 22:22:20 2331

原创 模型状态量

可训练参数是神经网络中需通过反向传播学习的张量,包括各层的权重矩阵与偏置向量。它们决定网络的功能映射,并在或中以生成器形式提供PyTorch。

2025-05-06 15:23:13 902

原创 The backpropagation and the brain

本文的核心贡献在于将反向传播的数学原理与生物神经机制相结合,提出了一种通过局部活动差异和反馈调制实现高效信用分配的框架(NGRAD)。这篇文章探讨了反向传播算法(Backpropagation)与大脑学习机制之间的潜在联系,提出了一个名为“神经梯度通过活动差异表示”(NGRAD)的框架,以解释大脑如何在多层神经网络中实现高效的信用分配(credit assignment)。通过比较前向传播的活动与反馈诱导的目标活动(如目标传播中的重构误差),生成局部梯度信号,替代传统的链式法则计算。

2025-04-23 21:41:54 904

原创 司南杯部分“题库”

参考:https://learn.originqc.com.cn/zh/exercise?

2025-04-22 16:22:47 190

原创 Quantum Algorithms for Compositional Natural Language Processing论文阅读

将量子计算引入语言学结构建模,突破传统NLP的维度瓶颈。

2025-04-22 11:37:46 1286 1

原创 量子奇异值变换(QSVT)

这一部分的目标是把矩阵 A“嵌入”到一个较大的酉矩阵 U的某个子空间内,即写成其中 Π和 Π 是正交投影算子。一个特殊情况是块编码(block-encoding),即如果 IΠ=Π=∣0〉〈0∣⊗I 则 A 就是 U的左上角块。根据 QSVT 理论,给定一个满足一定条件的奇异值多项式 P(x)(例如要求 P(x)为奇函数,或者偶函数,且在区间 [−1,1]内有 ∣P(x)∣≤1,我们可以构造一个量子电路,该电路在不改变奇异向量的前提下,将原矩阵 A 映射为如果A=WΣV† 为奇异值分解。

2025-04-10 09:51:39 817

原创 Mamba模型

让我们用一个更简单的例子来理解这个概念。想象我们正在走过一个迷宫。这里的“状态空间”就像是迷宫中所有可能位置的集合,即一张地图。地图上的每个点都代表迷宫中的一个特定位置,并包含了该位置的详细信息,比如离出口有多远。而“状态空间表示”则是对这张地图的抽象描述。它告诉我们当前所处的位置(当前状态)、我们可以移动到哪些位置(未来可能的状态),以及如何从当前位置转移到下一个状态(比如向左转或向右转)

2025-04-07 21:59:11 1319

原创 加法封闭性和酉矩阵

它们的不同主要体现在控制操作后不同分支的相位上或成功与失败分支的标签上,但这通常不会改变最终加权平均操作的本质效果。实际上,量子算法中只要能实现我们预期的干涉效果(即在成功分支获得加权和,在失败分支获得误差分量),这种细微的相位差别或者符号差别都是可以接受的。例如,神经网络中的权重更新通常涉及矩阵加法,但若要在量子计算机中保持酉性,必须改用其他方式(如酉矩阵的复合或参数化变换),而非直接相加。(满足 U†U=I)表示,以确保概率守恒。然而,酉矩阵在加法下并不闭合,即两个酉矩阵相加后的结果通常不再是酉矩阵。

2025-04-02 16:50:46 542

原创 关于transformer的一些工作理解

1.Tokenization:是将连续文本分割成离散 token 的过程,直接影响模型输入的表达能力。2.Softmax Attention:通过非线性 softmax 将相似度分数转化为权重,加权融合信息,但由于其非线性、敏感性以及全局依赖特性,使得直接压缩(例如低秩近似)变得困难。3.缓存机制(Cathe):在生成任务中,通过缓存前面的 Key 和 Value 来避免重复计算,提高推理速度,是 Transformer 高效解码的重要手段。

2025-03-20 10:27:56 917

原创 关于Torchquantum和Qiskit

TorchQuantum 基于 PyTorch 构建,天然支持与经典深度学习框架(如 PyTorch 的自动微分、GPU 加速、神经网络模块)的无缝结合。许多量子机器学习论文(如基于量子神经网络、量子生成模型的研究)采用 PyTorch 生态工具,复现时使用 TorchQuantum 更符合代码习惯。量子机器学习模型通常需要端到端的梯度计算(如参数化量子电路的梯度下降)。Qiskit 更专注于量子电路的低层描述(如门操作、脉冲控制),机器学习相关功能需依赖扩展库(如。)处理参数更新,与经典训练流程割裂。

2025-03-16 22:03:00 1296

原创 Symmetry Protected Topological phases of Quantum Matter——对称性保护量子物质的拓扑相位

对称性保护的拓扑相(SPT相)是由特定对称性保护的量子物态,其体态为绝缘体,但表面存在受对称性保护的边缘态。:提出三维电子系统中存在6种相互作用诱导的SPT相(如拓扑顺磁体),超越了自由费米子的Z2Z2​分类,形成Z23Z23​分类。:证明表面拓扑序(如eTmTeTmT和efmfef​mf​)的对称性无法在严格二维系统中实现,必须依赖三维体态的保护。:通过堆叠二维拓扑态并引入层间耦合,构建三维SPT相的体态和表面态(如图3)。:利用拓扑量子场论(TQFT)构造三维波函数,其边界实现非平凡表面拓扑序。

2025-03-14 19:52:14 379

原创 Optimal Bounds for Open Addressing Without Reordering

允许在插入时多次探测不同的子数组,从而在平均情况下实现O(1)的预期探测复杂度,同时在最坏情况下保持O(log δ⁻¹)的复杂度。证明任何非重排开放寻址哈希表的最坏情况探测复杂度下界为 Ω(log⁡δ−1),漏斗哈希的最坏情况复杂度下界为 Ω(log⁡2δ−1+log⁡log⁡n)。论文的背景是开放寻址哈希表的基本问题:插入元素时,如何通过探测序列找到未占用的位置,并最小化搜索的探测次数。:通过非贪婪的探测策略,允许插入时多次探测不同子数组,优先尝试低负载子数组,若失败再转向高负载子数组。

2025-03-14 14:33:41 876

原创 洛谷-拍苍蝇

Norman 有一个给定的 KKK 边形的苍蝇拍。他想知道有多少种放置苍蝇拍的方法,使得这个苍蝇拍的顶点在顶点为 (0,0)(0,0)(0,0) 和 (Xp,Yp)(X_p,Y_p)(Xp​,Yp​) 的矩形中,并且各个顶点是整点,满足没有一个苍蝇被伤害。其中,整点的定义是横坐标和纵坐标都是整数的点。这个矩形中有 NNN 个苍蝇,每一个苍蝇可以看成一个点 (X,Y)(X,Y)(X,Y)。一个苍蝇会被伤害,当且仅当这个苍蝇在这个苍蝇拍的顶点,边或内部。苍蝇拍不能旋转或翻折。第一行包含三个正整数 Xp,Yp,N

2025-03-11 12:44:40 903

原创 论文阅读 Quantum Convolutional neural network

在传统的局域序参量(如磁化强度 〈Xi〉)无法有效区分某些拓扑相(如 Haldane 相)时,字符串序参量(SOP)提供了一种方法来识别这些相。字符串序参量的定义通常涉及多个远离的站点之间的长程关联,通常具有如下形式:Zi,Xk,Zj是泡利矩阵(Pauli operators)。指数项 eiπ∑k=ijXk表示一个相位因子。这意味着我们要计算两个远离站点 i,j 的Z 分量的关联,同时考虑它们之间的X 作用。这个非局域的字符串序参量可以用来检测对称保护拓扑(SPT)相。

2025-03-11 12:25:35 1825 1

原创 Symmetry protect topological(SPT相)

取决于它们是否受对称性保护。

2025-03-10 10:58:42 363

原创 quantum convolutional neural network

网络 QCNN_ratio-0.5_epsilon-0.01_Cap-10_BackpErr_0.1第一轮(Epoch 1)损失较高(约 2.28),第二轮略有下降(约 2.22)。总体上损失较高,可能说明在这种配置下噪声较小(epsilon=0.01),但采样比例较高(ratio=0.5)和较高的 Cap(10)使得网络较“激进”,学习进程较慢或不稳定。网络 QCNN_ratio-0.3_epsilon-0.01_Cap-2_BackpErr_0.1。

2025-03-05 11:20:04 1114

原创 Shor‘s量子算法

在模 N 的加法群 ZN​ 上定义酉算子,其作用为:由于 a 与 N 互质,是置换矩阵,其本征值为单位根 e2πik/r,其中 k∈Zr。

2025-02-25 11:19:37 1343

原创 量子相位估计

(即 ∣ϕ−y′/2m∣<∣ϕ−y/2m∣),测量到原最佳近似 y的概率会被分散到其他候选值(如 y′)。:此时测量到 y 的概率显著降低(例如用户提到的 p=3%),因为算法更倾向于选择更接近的 y′。(即 ϕ=y/2mϕ=y/2m,其中 m 是量子比特数),此时相位估计是精确的。更小,则 P(y′)>P(y),导致原 y的概率降低。:当存在更优近似时,原近似的概率被分散,导致结果不可靠。:测量到 y 的概率接近 100%,因为无近似误差。此时测量到 y=5的概率会远低于 y′=3。

2025-02-24 11:15:55 442

原创 量子Simon算法

我们将解开承诺以更好地理解暂时说什么,但是在这样做之前,让我们清楚地表明,大多数功能都无法满足这一Promise;同样重要的是要注意,如果实现承诺,只能有一个有效的字符串。因此,对于满足承诺的功能,总有一个独特的正确答案。Simon问题的输入函数以f:n→m的形式为正整数 n和m。为了简单起见,我们可以将注意力限制在M = N 的情况下,但是在做出这一假设方面没有什么可获得的 - Simon的算法及其分析基本相同。这意味着 f(x) 的值每次都重复两次,一个在 x,一个在 x⊕s.

2025-02-21 17:02:03 1122

原创 量子算法导论

对于查询这样的问题,或许有人会问,提出这样复杂且高度人为的问题,没有人会在实践中使用它们,但是这并不意味着这个问题并不有趣,而只是模型研究的一部分,寻找揭示量子计算潜在优势的极端情况。shor的量子算法是由simon的算法直接启发的。量子最基础的算法是Deutsch算法,输入是长度为1的函数f,而Deutsch-Jozsa输入是长度为n的函数f,输出是判断函数是平衡的还是连续的,如果是平衡函数,即0和1的数量相同,如果是非平衡函数,那么只出现1或者0,所以对于长度为n的函数,需要多少次查询才能判断呢?

2025-02-20 22:46:59 1219

原创 如何将经典算法做成量子算法

将经典逻辑转化为量子门操作(如使用 CNOT 门、Hadamard 门等)。:考虑量子硬件的局限性(如错误率、退相干时间),优化电路深度和量子比特数量。:确定算法的时间复杂度主要来自哪些操作(例如排序中的比较、搜索中的遍历)。:通过纠缠态实现全局信息的高效操作(如 Shor 算法中的周期查找)。:明确经典算法中的核心步骤(如循环、递归、分支判断、数据操作等)。:证明量子算法相对于经典算法的加速(如多项式级或指数级加速)。:将算法中某一步骤量子化(如量子采样、量子优化)。

2025-02-20 11:00:41 511

原创 从量子模拟到量子搜索算法

量子模拟过程与量子搜索算法类似

2025-02-11 17:59:56 162

算法导论991知识点总结

算法导论991知识点总结

2024-09-20

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除