【机器学习基础】概率分布之指数族分布

这篇笔记主要介绍了指数族分布的概念,包括其基本形式、伯努利分布和多项式分布的示例,以及最⼤似然估计和充分统计量的原理。此外,还探讨了共轭先验和无信息先验的选择。最后,简要提到了非参数化方法中的核密度估计和近邻方法在概率密度估计和分类问题中的应用。
摘要由CSDN通过智能技术生成

本系列为《模式识别与机器学习》的读书笔记。

一,指数族分布

1,指数族分布基本概念

参数为 η \boldsymbol{\eta} η 的变量 x \boldsymbol{x} x 的指数族分布定义为具有下⾯形式的概率分布的集合:
p ( x ∣ η ) = h ( x ) g ( η ) exp ⁡ { η T μ ( x ) } (2.106) p(\boldsymbol{x|\eta}) = h(\boldsymbol{x})g(\boldsymbol{\eta})\exp \{\boldsymbol{\eta}^{T}\boldsymbol{\mu}(\boldsymbol{x})\}\tag{2.106} p(xη)=h(x)g(η)exp{ ηTμ(x)}(2.106)
其中 x \boldsymbol{x} x 可能是标量或者向量, 可能是离散的或者是连续的。 这⾥ η \boldsymbol{\eta} η 被称为概率分布的 ⾃然参数natural parameters), μ ( x ) \boldsymbol{\mu}(\boldsymbol{x}) μ(x) x \boldsymbol{x} x 的某个函数。函数 g ( η ) g(\boldsymbol{\eta}) g(η) 可以被看成系数,它确保了概率分布是归⼀化的,因此满⾜:
g ( η ) ∫ h ( x ) exp ⁡ { η T μ ( x ) } d x = 1 (2.107) g(\boldsymbol{\eta})\int h(\boldsymbol{x})\exp \{\boldsymbol{\eta}^{T}\boldsymbol{\mu}(\boldsymbol{x})\}\mathrm{d}\boldsymbol{x}=1\tag{2.107} g(η)h(x)exp{ ηTμ(x)}dx=1(2.107)
如果 x \boldsymbol{x} x 是离散变量,那么上式中的积分就要替换为求和。

考虑伯努利分布:
p ( x ∣ μ ) = Bern ( x ∣ μ ) = μ x ( 1 − μ ) 1 − x (2.108) p(x|\mu) = \text {Bern}(x|\mu) = \mu^{x}(1-\mu)^{1-x}\tag{2.108} p(xμ)=Bern(xμ)=μx(1μ)1x(2.108)

变形,有:

p ( x ∣ μ ) = exp ⁡ { x ln ⁡ μ + ( 1 − x ) ln ⁡ ( 1 − μ ) } = ( 1 − μ ) exp ⁡ { ln ⁡ ( μ 1 − μ ) x } (2.109) \begin{aligned} p(x|\mu) &= \exp \{x\ln \mu +(1-x) \ln (1-\mu)\} \\ &= (1-\mu)\exp \left\{\ln \left(\frac{\mu}{1-\mu}\right)x\right\}\end{aligned}\tag{2.109} p(xμ)=exp{ xlnμ+(1x)ln(1μ)}=(1μ)exp{ ln(1μμ)x}(2.109)

对比公式(2.106),可得:
η = ln ⁡ ( μ 1 − μ ) \eta = \ln \left(\frac{\mu}{1-\mu}\right) η=ln(1μμ)

从而,有:
μ = σ ( η ) = 1 1 + exp ⁡ ( − η ) (2.110) \begin{aligned}\mu &= \sigma(\eta) \\ &= \frac{1}{1+\exp(-\eta)}\end{aligned}\tag{2.110} μ=σ(η)=1+exp(η)1(2.110)

被称为 logistic sigmoid函数
因此,伯努利分布的指数族分布标准形式:
p ( x ∣ μ ) = σ ( − η ) exp ⁡ ( η x ) (2.111) p(x|\mu) = \sigma(-\eta)\exp(\eta x)\tag{2.111} p(xμ)=σ(η)exp(ηx)(2.111)
其中,
μ ( x ) = x h ( x ) = 1 g ( η ) = σ ( − η ) \mu(x) = x \\ h(x) = 1 \\ g(\eta)=\sigma(-\eta) μ(x)=xh(x)=1g(η)=σ(η)

考虑单⼀观测 x \boldsymbol{x} x 的多项式分布,形式为:
p ( x ∣ μ ) = ∏ k = 1 K μ k x k = exp ⁡ { ∑ k = 1 K x k ln ⁡ μ k } (2.112) p(\boldsymbol{x|\mu}) = \prod_{k=1}^{K}\mu_{k}^{x_{k}} = \exp\left\{\sum_{k=1}^K x_{k}\ln \mu_{k}\right\}\tag{2.112} p(xμ)=k=1Kμkxk=exp{ k=1Kxklnμk}(2.112)

其中 x = ( x 1 , … , x M ) T \boldsymbol{x} = (\boldsymbol{x}_1,\dots ,\boldsymbol{x}_M)^T x=(x1,,xM)T 。把它写成公式(2.106)的标准形式,即:
p ( x ∣ μ ) = exp ⁡ ( η T x ) (2.113) p(\boldsymbol{x|\mu}) = \exp(\boldsymbol{\eta}^{T}\boldsymbol{x})\tag{2.113} p(xμ)=exp(ηTx)(2.113)

其中, η k = ln ⁡ μ k \eta_{k} = \ln \mu_{k} ηk=lnμk η = ( η 1 , … , η M ) T \boldsymbol{\eta}=(\eta_1,\dots,\eta_{M})^T η=(η1,,ηM)T,并且
μ ( x ) = x h ( x ) = 1 g ( η ) = 1 ∑ k = 1 K μ k = 1 \boldsymbol{\mu}(\boldsymbol{x}) = \boldsymbol{x} \\ h(\boldsymbol{x}) = 1 \\ g(\boldsymbol{\eta}) = 1 \\ \sum_{k=1}^{K} \mu_{k}=1 μ(x)=xh(x)=1g(η)=1k=1Kμk=1

考虑只⽤ M − 1 M−1 M1 个参数来表⽰这个分布,把 μ M \mu_M μM ⽤剩余的 { μ k } \{\mu_k\} { μk} 表⽰,其中 k = 1 , … , M − 1 k = 1, \dots , M−1 k=1,,M1,这样就只剩下了 M − 1 M−1 M1 个参数,公式(2.112)变为:
p ( x ∣ μ ) = exp ⁡ { ∑ k = 1 K x k ln ⁡ μ k } = exp ⁡ { ∑ k = 1 M − 1 x k ln ⁡ ( μ k 1 − ∑ j = 1 M − 1 μ j ) + ln ⁡ ( 1 − ∑ k = 1 M − 1 μ k ) } (2.114) \begin{aligned}p(\boldsymbol{x|\mu}) &= \exp\left\{\sum_{k=1}^K x_{k}\ln \mu_{k}\right\} \\ &= \exp \left\{\sum_{k=1}^{M-1}x_{k}\ln\left(\frac{\mu_{k}}{1-\sum_{j=1}^{M-1}\mu_{j}}\right) + \ln \left(1-\sum_{k=1}^{M-1}\mu_{k}\right)\right\} \end{aligned}\tag{2.114} p(xμ)=exp{ k=1Kxklnμk}=exp{ k=1M1x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值