Paul-Huang
码龄14年
关注
提问 私信
  • 博客:1,191,579
    社区:81
    问答:1,044
    1,192,704
    总访问量
  • 150
    原创
  • 913,255
    排名
  • 974
    粉丝
  • 11
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2010-05-30
博客简介:

Paul_Huang的专栏

博客描述:
坚持不懈才能到达终点,你听说过海燕吗?一往无前,笑对风雨!
查看详细资料
个人成就
  • 获得1,092次点赞
  • 内容获得183次评论
  • 获得3,752次收藏
  • 代码片获得5,101次分享
创作历程
  • 1篇
    2023年
  • 6篇
    2022年
  • 66篇
    2021年
  • 14篇
    2020年
  • 1篇
    2018年
  • 28篇
    2017年
  • 17篇
    2016年
  • 69篇
    2015年
  • 3篇
    2014年
成就勋章
TA的专栏
  • pytorch学习
    9篇
  • 机器学习-白板推导
    23篇
  • Python学习
    21篇
  • 吴恩达-深度学习笔记
    8篇
  • 医学图像&论文笔记
    10篇
  • GAN
    10篇
  • 英语学习
    2篇
  • 机器学习
    34篇
  • 数字图像基础
    34篇
  • 生活经验
    10篇
  • 稀疏表示
    5篇
  • 智能算法
    6篇
  • 深入理解计算机系统(CSAPP)
    7篇
  • C++学习
    7篇
  • MIT 线性代数 读书笔记
    13篇
  • 陈越数据结构
    8篇
  • PTA
    11篇
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 人工智能
    opencvcaffetensorflowmxnetpytorchnlpscikit-learn聚类集成学习迁移学习分类回归
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

’torch.round后梯度为0,无法进行梯度回传‘的解决方法

问题描述:round函数在定义域中的导数,处处为0或者无穷,梯度无法反向传播。本文将使用autograd.function类自定义可微分的round函数,使得round前后的tensor,具有相同的梯度。torch.round(x)导数处处为0,x.detach()在计算图中无梯度,因此其ste_round的倒数就是x的导数。torch.round(x)导数处处为0,x.detach()在计算图中,x的导数为1。
原创
发布博客 2023.05.30 ·
1199 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

【解决】RuntimeError: Distributed package doesn‘t have NCCL built in

RuntimeError: Distributed package doesn't have NCCL built in
原创
发布博客 2022.11.17 ·
9012 阅读 ·
1 点赞 ·
4 评论 ·
10 收藏

统计学习方法第二章习题

统计学习方法第二章习题
原创
发布博客 2022.11.06 ·
1764 阅读 ·
0 点赞 ·
0 评论 ·
12 收藏

统计学习第一章习题

统计学习方法第一章习题
原创
发布博客 2022.10.18 ·
521 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

消融实验(ablation experiment)

消融实验
原创
发布博客 2022.06.17 ·
3169 阅读 ·
4 点赞 ·
2 评论 ·
13 收藏

如何阅读论文

如何阅读论文李沐1. 第一遍:文章主要讲什么1.1 看整体1.2 看图表2. 第二遍:文章每一部分讲什么3. 第三遍:真正读懂吴恩达1.1 系统阅读论文集1.2 论文至少要看三遍1.3 问自己问题1.4 一些有用的在线资源1.5 Learn steadily rather than short burst for longevity.参考:论文的结构一般是:title(标题)abstract(摘要)intro(导言)method(提出的算法)exp(实验)conclusion(结论)
原创
发布博客 2022.01.26 ·
2946 阅读 ·
4 点赞 ·
0 评论 ·
17 收藏

【DataWhales】深入浅出Pytorch-第三章/第四章

【DataWhales】深入浅出Pytorch-第三章/第四章第三章: Pytorch 的主要组成模块3.1 神经网络学习机制和深度学习在实现上的特殊性3.1.1 神经网络学习机制3.1.2 深度学习在实现上的特殊性3.2 PyTorch深度学习模块第四章 基础实战——FashionMNIST时装分类4.1 基本配置4.1.1 导入必要的包4.1.2 配置训练环境4.1.3 配置超参数4.2 数据读入4.2.1 读取方式一:使用torchvision自带数据集4.2.2 读取方式二:读入csv格式的数据,自
原创
发布博客 2022.01.05 ·
364 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【DataWhales】深入浅出Pytorch-第二章

【DataWhales】深入浅出Pytorch-第二章1. Pytorch的基本操作1.1 建立tensor类型(2种方法)1.2 tensor 与 numpy(array)之间的转换1.3 tensor常见的构造函数(4个函数)2. Tensor的基本操作2.1 查看tensor的维度信息(2种方式)2.2 tensor的运算2.3 tensor索引2.4 改变形状(view)2.5 扩展&压缩tensor的维度:unsqueeze/squeeze3. 自动求导1. Pytorch的基本操作1
原创
发布博客 2021.12.30 ·
954 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Matlab中批读取DCM文件

Matlab中批读取DCM文件1. 利用cd读取路径2. 利用dir读取文件夹的文件名3. 代码1. 利用cd读取路径cd Change current working directory. cd directory-spec sets the current directory to the one specified. cd .. moves to the directory above the current one. cd, by itself, prints o
原创
发布博客 2021.12.07 ·
3994 阅读 ·
1 点赞 ·
0 评论 ·
10 收藏

pytorch学习-7:RNN 循环神经网络 (分类)

pytorch学习-7:RNN 循环神经网络(分类)1. 加载MNIST手写数据1.1 数据预处理2. RNN模型建立3. 训练4. 预测参考循环神经网络让神经网络有了记忆, 对于序列话的数据,循环神经网络能达到更好的效果.1. 加载MNIST手写数据import torchfrom torch import nnimport torchvision.datasets as dsetsimport torchvision.transforms as transformsimport matpl
原创
发布博客 2021.11.29 ·
2037 阅读 ·
1 点赞 ·
0 评论 ·
12 收藏

python中npz文件读取和图片显示

python中npz文件读取和图片显示1. npz文件读取1.1 读入1.2 大小2. 读取图片1. npz文件读取1.1 读入from PIL import Imageimport numpy as npimport matplotlib.pyplot as pltpath1 = "J:/code/cardiac_data/2Dwithoutcenter1/27-18-3.npz"path2 = "J:/code/cardiac_data/2Dwithoutcenter1/27-7-3.n
原创
发布博客 2021.11.29 ·
6384 阅读 ·
1 点赞 ·
1 评论 ·
10 收藏

VAE与CVAE

CVAE理论到代码1. VAE的本质1.1 深度理解VAE1.2 VAE 与GAN2. CVAE2.1 CVAE简介2.2 CVAE基本模型2.3 数学理解参考1. VAE的本质1.1 深度理解VAEVAE本质就是在我们常规的自编码器的基础上,对encoder的结果(在VAE中对应着计算均值的网络)加上了“高斯噪声”\color{red}“高斯噪声”“高斯噪声”,使得结果decoder能够对噪声有鲁棒性\color{red}使得结果decoder能够对噪声有鲁棒性使得结果decoder能够对噪声有
原创
发布博客 2021.11.22 ·
5083 阅读 ·
10 点赞 ·
0 评论 ·
57 收藏

常见的医学影像数据格式及其读取与保存

常见的医学影像数据格式及其读取与保存1. 医学图像医学图像是反映解剖区域内部结构或内部功能的图像,它是由一组图像元素——像素(2D) 或立体像素(3D) 组成的。医学图像是由采样或重建产生的离散性图像表征,它能将数值映射到不同的空间位置上。像素的数量是用来描述某一成像设备下的医学成像的,同时也是描述解剖及其功能细节的一种表达方式。像素所表达的具体数值是由成像设备、成像协议、影像重建以及后期加工所决定的。医学图像有四个关键成分——图像深度、光度表示、元数据和像素数据\color{red}图像深度
原创
发布博客 2021.11.21 ·
12915 阅读 ·
4 点赞 ·
1 评论 ·
73 收藏

pytorch学习-5:批训练+Optimizer 优化器

pytorch学习-5:批训练+Optimizer 优化器1. 批训练1.1 DataLoaderDataLoader 是 torch 给你用来包装你的数据的工具. 所以你要讲自己的 (numpy array 或其他) 数据形式装换成 Tensor, 然后再放进这个包装器中. 使用 DataLoader 有什么好处呢? 就是他们帮你有效地迭代数据, 举例:import torchimport torch.utils.data as Datatorch.manual_seed(1) # re
转载
发布博客 2021.11.18 ·
298 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Spatial Transformer Networks(STN)-代码实现

Spatial Transformer Networks(STN)-代码实现pytorch为了方便实现STN,里面封装了affine_grid和grid_sample两个高级API。STN的基本步骤是:Localisation  net\color{blue}Localisation\;netLocalisationnet(参数预测):Localisation net模块通过CNNCNNCNN提取图像的特征来预测变换矩阵θ\thetaθGrid  generator\color{
原创
发布博客 2021.11.18 ·
5710 阅读 ·
1 点赞 ·
2 评论 ·
42 收藏

【论文笔记-5】Spatial Transformer Networks(STN)

Spatial Transformer Networks(STN)-论文笔记1. 问题提出CNN在图像分类中取得了显著的成效,主要是得益于 CNN 的深层结构具有 :平移不变性、缩小不变性\color{red}平移不变性、缩小不变性平移不变性、缩小不变性;还对缺失的空间不变性(spatially  invariance)\color{red}空间不变性(spatially\;invariance)空间不变性(spatiallyinvariance)做了相应的实验。缩小不变性缩小不变性缩小不变性主
原创
发布博客 2021.11.18 ·
2342 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

pytorch学习-4:快速搭建+保存提取

快速搭建+保存提取1. 快速搭建上一讲神经网络时用到的步骤. 我们用 net1 代表这种方式搭建的神经网络。用 class 继承了一个 torch 中的神经网络结构, 然后对其进行了修改。class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear
转载
发布博客 2021.11.16 ·
180 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pytorch学习-3:线性回归

线性回归1. 问题描述一个一元二次函数: y=ax2+by=ax^2+by=ax2+b, 我们给 yyy 数据加上一点噪声来更加真实的展示它。import torchimport matplotlib.pyplot as pltx = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)y = x.pow(2) + 0.2*torch.rand(x.size())
转载
发布博客 2021.11.16 ·
154 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pytorch学习-2:变量(Variable)和激励函数

1. 变量 (Variable)1.1 什么是 Variable在 Torch 中的 Variable 就是一个存放会变化的值的地理位置. 里面的值会不停的变化. 就像一个裝鸡蛋的篮子, 鸡蛋数会不停变动. 那谁是里面的鸡蛋呢, 自然就是 Torch 的 Tensor 咯. 如果用一个 Variable 进行计算, 那返回的也是一个同类型的 Variable.1.1.1 定义变量import torchfrom torch.autograd import Variable # torch 中 V
转载
发布博客 2021.11.16 ·
642 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

pytorch学习-1:Torch vs Numpy

Torch vs Numpy1. numpy, torch 之间的转换Torch 自称为神经网络界的 Numpy, 因为他能将 torch 产生的 tensor 放在 GPU 中加速运算 (前提是你有合适的 GPU), 就像 Numpy 会把 array 放在 CPU 中加速运算. 所以神经网络的话, 当然是用 Torch 的 tensor 形式数据最好咯. 就像 Tensorflow 当中的 tensor 一样.import torchimport numpy as npnp_data =
转载
发布博客 2021.11.15 ·
1306 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多