轩辕实验室丨基于信息熵的车载网络流量异常检测防御方法

本文介绍了一种基于信息熵的车载网络流量异常检测方法。该方法通过设定检测阈值和滑动窗口,计算流量信息熵并对比阈值来判断是否出现异常。适用于CAN总线和车载以太网等自动驾驶场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文来自轩辕实验室相关研究成果。

本发明通过设定一个检测阈值和固定大小的滑动窗口,计算滑动窗口中流量的信息熵,利用所计算的熵值和阈值对比进行异常判断,实现一种基于信息熵的车载网络流量异常检测防御方法。

本发明针对CAN总线和车载以太网的流量,取不同对象作为离散随机变量。在车载网络出现异常流量时,这些随机变量的取值分布会被改变,从而导致信息熵值发生剧烈下降。通过设定阈值,判断信息熵是否在合理界线内,从而实现网络流量的异常检测。

在传统的基于异常的入侵检测技术中有一类方案是基于统计形成,其中基于熵值理论的方法可以有效检测传统网络流量的异常情况,并且这类方法具有较好的检测效率和合适的算力消耗代价,可以利用这种方法检测自动驾驶场景下车载网络的异常流量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值