【MVO三维路径规划】基于matlab多元宇宙算法多无人机避障三维航迹规划【含Matlab源码 2579期】

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
在这里插入图片描述
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab路径规划仿真内容点击👇
Matlab路径规划(进阶版)
付费专栏Matlab路径规划(初级版)

⛳️关注CSDN海神之光,更多资源等你来!!

⛄一、无人机简介

0 引言
随着现代技术的发展,飞行器种类不断变多,应用也日趋专一化、完善化,如专门用作植保的大疆PS-X625无人机,用作街景拍摄与监控巡察的宝鸡行翼航空科技的X8无人机,以及用作水下救援的白鲨MIX水下无人机等,决定飞行器性能主要是内部的飞控系统和外部的路径规划问题。就路径问题而言,在具体实施任务时仅靠操作员手中的遥控器控制无人飞行器执行相应的工作,可能会对操作员心理以及技术提出极高的要求,为了避免个人操作失误,进而造成飞行器损坏的危险,一种解决问题的方法就是对飞行器进行航迹规划。
飞行器的测量精度,航迹路径的合理规划,飞行器工作时的稳定性、安全性等这些变化对飞行器的综合控制系统要求越来越高。无人机航路规划是为了保证无人机完成特定的飞行任务,并且能够在完成任务的过程中躲避各种障碍、威胁区域而设计出最优航迹路线的问题。

1 常见的航迹规划算法
在这里插入图片描述
图1 常见路径规划算法
文中主要对无人机巡航阶段的航迹规划进行研究,假设无人机在飞行中维持高度与速度不变,那么航迹规划成为一个二维平面的规划问题。在航迹规划算法中,A算法计算简单,容易实现。在改进A算法基础上,提出一种新的、易于理解的改进A算法的无人机航迹规划方法。传统A算法将规划区域栅格化,节点扩展只限于栅格线的交叉点,在栅格线的交叉点与交叉点之间往往存在一定角度的两个运动方向。将存在角度的两段路径无限放大、细化,然后分别用两段上的相应路径规划点作为切点,找到相对应的组成内切圆的圆心,然后作弧,并求出相对应的两切点之间的弧所对应的圆心角,根据下式计算出弧线的长度
在这里插入图片描述
式中:R———内切圆的半径;
α———切点之间弧线对应的圆心角。

⛄二、多元宇宙算法

多元宇宙算法是 Seyedali Mirjalili 教授于 2015 年底与其团队共同设计的启发式算法.该算法主要借助宇宙在随机创建过程中高膨胀率物体总是趋于低膨胀率的物体,这种万有引力作用可以使物体转移,借助相关宇宙学规则,可以在搜索空间逐渐趋于最优位置.
遍历过程主要分为探索和开采过程,虫洞可以作为转移物体的媒介,通过白洞和黑洞交互作用进行搜索空间探测,本文算法具体操作如下:假设搜索空间存在宇宙矩阵为
在这里插入图片描述
式中: d 为变量个数; n 为宇宙数量( 候选解) ;
在这里插入图片描述式中: xji 为第 i 个宇宙的第 j 个变量; Ui 为第 i 个宇宙; NI( Ui ) 为第 i 个宇宙的标准膨胀率; r1 为介于0 和1的随机数; xj k 为根据螺旋机制被选中的第 i 个宇宙的第 j 个变量.
通过式( 13) ,依据标准膨胀率大小,白洞将以螺旋形式搜索,膨胀率低的物体更易于通过白洞或黑洞输送物体.同等情况下,膨胀率更高的物体具有更强拥有白洞的可能性,膨胀率更低的物体拥有黑洞的可能性更低. 对于最大化问题,- NI 将被改变为NI.根据搜索机制,在排除扰动影响时,为了使其始终处于探索过程,每个宇宙将物体通过虫洞随机传送.白洞传送物体穿过虫洞,如图 1 所示.为了提高宇宙利用虫洞提高物体膨胀率的可能性,假设虫洞隧道总是建立在宇宙和最优宇宙之间.这种机制可以公式为:
在这里插入图片描述
在这里插入图片描述
式中: Xj 为目前最优宇宙的第 j 个变量,WEP 和 TDR 是两个系数; ubj 为第 j 个变量最高值; lbj 为第 j 个变量最低值; xji 为第 i 个宇宙的第 j 个变量; r2,r3,r4 均为介于 0 和 1 的随机数。

⛄三、部分源代码

close all;
clear all;
clc;
addpath(genpath(‘./’));

%% Plan path
disp(‘Planning …’);
v1=cputime;
map = load_map(‘maps/map3.txt’, 0.1, 0.5, 0.25);
%%map = load_map(‘maps/map1.txt’, 0.1, 0.5, 0.25);
%%map = load_map(‘maps/map2.txt’, 0.1, 0.5, 0.25);
start = {[14.1,2.8,5.8],[11.6,2,5],[8.1,3,5],[14,4,5],[11.2,4.5,5]};
stop = {[19.8,2,5],[19.8,4.5,5.6],[1.8,4,5.6],[2,3,5.9],[5,4,5.2]};

dist = [0 0 0 0 0 ;0 0 0 0 0 ;0 0 0 0 0 ;0 0 0 0 0;0 0 0 0 0 ];
for i= 1:length(start)
for j= 1:length(start)
p1=start{i};
p2=stop{j};
disp(p1);
dist_x = (p1(1,1)- p2(1,1))(p1(1,1) - p2(1,1));
dist_y = (p1(1,2)- p2(1,2))
(p1(1,2) - p2(1,2));
dist_z = (p1(1,3)- p2(1,3))*(p1(1,3) - p2(1,3));
dist(i,j) = sqrt(dist_x + dist_y + dist_z);
end
end

[ass,cost]=munkres(dist);

start_temp = {};
stop_temp = {};
for i = 1:length(start)
for j=1:length(start)
if ass(i,j)==1
start_temp{end+1}= start{i};
stop_temp{end+1}= stop{j};
end
end
end
fprintf(‘Munkres Execution time = %d \n’,cputime-v1);
start = start_temp;
stop= stop_temp;
disp(start)
disp(stop)
disp(length(start))
disp(length(stop))
sumall =0;
maxall = -1;
minall = 1000000000000;
sumallarray = [];
for sim = 1:10
fprintf(‘Simulation number= %d \n’,sim);
%visited_nodes = [];
nquad = length(start);
costValue=0;
sumValue=0;
for qn = 1:nquad
v = cputime;
[path{qn},costValue] = MVONEW(map, start{qn}, stop{qn},true);
c = cputime - v;

sumValue = sumValue+costValue
fprintf('Algo Execution time for quad %d = %d \n',qn,c);

end

sumall = sumall+sumValue;
sumallarray(end+1) = sumValue;
if(sumValue>maxall)
maxall=sumValue;
end
if(sumValue<minall)
minall=sumValue;
end
if nquad == 1
plot_path(map, path{1});
else
% you could modify your plot_path to handle cell input for multiple robots
for qn = 1:nquad
plot_path(map, path{qn});
end
end
end
fprintf(‘Sum is %d and average is %d \n’,sumall,sumall/10);
fprintf(‘Min is %d and Max is %d \n’,minall,maxall);
fprintf(‘Standard deviation is %d \n’,std(sumallarray));

%% Additional init script
init_script;

⛄四、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄五、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]焦阳.基于改进蚁群算法的无人机三维路径规划研究[J].舰船电子工程. 2019,39(03)
[2]刘世宇,王孜航,杨德友.多元宇宙算法及其在电力系统环境经济调度的应用[J].东北电力大学学报,2018年04期

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值