R语言系统教程(十二):R语言中与线性模型有关的函数
12.1 基本函数
适应于多元线性模型的基本函数是lm(),其调用形式是
lm(formula, data = data.frame)
其中formula为模型公式,data.frame为数据框,返回值为线性模型结果对象,实际使用时需要赋给某个变量名,例如:
fm1 = lm(y~x1+x2, data = production)
适用于y关于x1和x2的多元回归模型(隐含截距项)。其更一般的声明如下:
lm(formula, data, subset, weights, na.action,
method = “qr”, model = TRUE, x = FALSE,
y = FALSE, qr = TRUE, singular.ok = TRUE,
contrasts = NULL, offset, …)
其中formula为公式,data为数据框,subset为可选向量,表示数据集观察值的子集,weights为可选择向量,是数据拟合的权重,其余见官方文档
12.2 提取模型信息的通用函数
lm()函数的返回值本质上是一个具有类属性值lm的列表,有model、coeffcients、residuals等成员,lm()的结果非常简单,为了获得更多的信息,可以使用对lm()类对象有特殊操作的通用函数,这些函数包括:
add1 coef effects kappa predict residual alias deviance family labels print step anova drop1 formula plot proj summary 等。
简单介绍一些函数的用法:
- anova()函数