R notes (2) : predict.lm function

predict.lm 函数用于基于线性模型对象生成预测值。它根据新的数据帧newdata(默认为model.frame(object))评估回归函数。如果se.fit为TRUE,将计算预测的标准误差。如果提供了scale参数(带有可选的df),则将其用作计算标准误差的残差标准偏差,否则从模型拟合中提取。此外,可以通过设置intervals来计算指定水平的置信或预测区间。
摘要由CSDN通过智能技术生成

Reference

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/predict.lm

Predict method for Linear Model Fits

Predicted values based on linear model object.

Usage

# S3 method for lm
predict(object, newdata, se.fit = FALSE, scale = NULL, df = Inf,
        interval = c("none", "confidence", "prediction"),
        level = 0.95, type = c("response", "terms"),
        terms = NULL, na.action = na.pass,
        pred.var = res.var/weights, weights = 1,)

Arguments

Arguments Instrument
object Object of class inheriting from “lm”
newdata An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used.
se.fit A switch indicating if standard errors are required.
scale Scale parameter for std.err. calculation.
df Degrees of freedom for scale.
interval Type of interval calculation. Can be abbreviated.
level Tolerance/confidence level.
type Type of prediction (response or model term). Can be abbreviated.
terms If type = “terms”, which terms (default is all terms), a character vector.
na.action function determining what should be done with missing values in newdata. The default is to predict NA.
pred.var the variance(s) for future observations to be assumed for prediction intervals. See ‘Details’.
weights variance weights for prediction. This can be a numeric vector or a one-sided model formula. In the latter case, it is interpreted as an expression evaluated in newdata.

Details

predict.lm produces predicted values, obtained by evaluating the regression function in the frame newdata (which defaults to model.frame(object)). If the logical se.fit is TRUE, standard errors of the predictions are calculated. If the numeric argument scale is set (with optional df), it is used as the residual standard deviation in the computation of the standard errors, otherwise this is extracted from the model fit. Setting intervals specifies computation of confidence or prediction (tolerance) intervals at the specified level, sometimes referred to as narrow vs. wide intervals.

If the fit is rank-deficient, some of the columns of the design matrix will have been dropped. Prediction from such a fit only makes sense if newdata is contained in the same subspace as the original data. That cannot be checked accurately, so a warning is issued.

If newdata is omitted the predictions are based on the data used for the fit. In that case how cases with missing values in the original fit are handled is determined by the na.action argument of that fit. If na.action = na.omit omitted cases will not appear in the predictions, whereas if na.action = na.exclude they will appear (in predictions, standard errors or interval limits), with value NA. See also napredict.

The prediction intervals are for a single observation at each case in newdata (or by default, the data used for the fit) with error variance(s) pred.var. This can be a multiple of res.var, the estimated value of σ2: the default is to assume that future observations have the same error variance as those used for fitting. If weights is supplied, the inverse of this is used as a scale factor. For a weighted fit, if the prediction is for the original data frame, weights defaults to the weights used for the model fit, with a warning since it might not be the intended result. If the fit was weighted and newdata is given, the default is to assume constant prediction variance, with a warning.

Example 1

data

在这里插入图片描述
在这里插入图片描述

Codes

> xy = read.table(file = 'C:/Users/DELL/Desktop/Data Mining/Lecture/sp2001A/data01A.dat', header = T)
> xy
      x1    x2    x3    x4    x5     y
1   1.29  0.40 -0.02  0.23  0.37  1.12
2  -0.54 -1.43  0.74 -0.27  0.45 -0.95
3   0.50 -0.85 -0.02 -0.39  1.55 -0.92
4   0.54 -1.39  1.29  1.03 -0.28 -3.14
5   0.34  0.24  0.65  1.95 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值