题目链接:https://vjudge.net/problem/CodeForces-1327E
题意
对于一个数字串 x,可以看做是由多个连续相同的数字块组成的,比如x=00027734000,其长度为 3 的数字块有两个(000、000),长度为 2 的数字块有一个(77),长度为 1 的数字块有 3 个(2、3、4)。现在给整数 n,表示有 0 到 10n-1 个数字,现在要求算出这些数字中长度为i(1<=i<=n)的数字块的个数,答案对 998244353 取模。
范围:1<=n<=2*105
分析
- 看样例很快可以发现n=1,i=1和n=2,i=2的答案相同。
- 再手算一下n=3时,答案为2610 180 10,n=4时,为34200 2610 180 10。
- 这样可以发现一个规律,即(n,i)的答案与(n-1,i-1)的答案是相同的,递推出(n-i+1,1)的答案也是相同的,而如果直接算(n,1)是很容易算出来的。
- 计算(n,1):如果n==1,答案为10, 如果n>=2,左右两端的方案总共为2*10*9*10n-2==180*10n-2,中间的方案总数为(n-2)*10*9*9*10n-3==(81*n-162)*10n-2;合计为(81*n+18)*10n-2即为答案。
- 预处理一下,不然重复计算10x会花费大量时间从而导致TLE。
代码如下:
#include<cstdio>
using namespace std;
typedef long long ll;
const int maxn = 2 * 1e5 + 5;
const ll mod = 998244353;
ll ans[maxn], pow[maxn];
int main(void) {
ll n;
scanf("%lld", &n);
pow[0] = 1;
for (int i = 3; i <= n; i++)
pow[i - 2] = ((pow[i - 3] << 1) + (pow[i - 3] << 3)) % mod;
for (ll i = 1; i <= n; i++) {
ll n2 = n - i + 1;//n,i换成n2,1的形式
if (n2 == 1)ans[i] = 10;
else ans[i] = ((81 * n2 % mod + 18) % mod * pow[n2 - 2] % mod) % mod;
}
for (ll i = 1; i <= n; i++)
printf("%lld%c", ans[i] % mod, i == n ? '\n' : ' ');
return 0;
}