Numpy
Numpy是一个开源的Python科学计算基础库。
- 一个强大的N维数组对象ndarray
- 广播功能函数
- 整合C/C++/Fortan代码的工具
- 线性代数、傅里叶变换、随机数生成等功能
Numpy是SciPy、Pandas等数据处理或科学计算库的基础。
一般引用格式为:import numpy as np
N维数组对象:ndarray
为什么要设置数组对象?
- 数组对象可以去掉元素间运算需要的循环,使一维向量更像单个数据。
- 设置专门的数组对象,经过优化,可以提升这类应用的运算速度。
- Numpy的底层实现是由C语言来完成的,运算性能高效。
- 科学计算中,一个维度所有数据的类型往往相同,数组对象采用相同的数据类型,有助于节省运算和存储空间。
ndarray简介
ndarray是一个多维数组对象,由两部分构成:
- 实际的数据
- 描述这些数据的元数据(数据维度、数据类型等)
ndarray数组一般要求所有元素类型相同(同质),数组下标从0开始。
ndarray实例
np.array()生成一个ndarray数组(ndarray在程序中的别名是:array)
np.array()输出成[]形式,元素由空格分割。
两个基本概念:轴(axis):保存数据的维度 秩(rank):轴的数量
ndarray对象的属性
属性 | 说明 |
---|---|
.ndim | 秩,即轴的数量或维度的数量 |
.shape | ndarray对象的尺度,对于矩阵,n行m列 |
.size | ndarray对象元素的个数,相当于.shape中n*m的值 |
.dtype | ndarray对象的元素类型 |
.itemsize | ndarray对象中每个元素的大小,以字节为单位 |
ndarray的元素类型
数据类型 | 说明 |
---|---|
bool | 布尔类型,True或False |
intc | 与C语言中的int类型一致,一般与int32或int64,具体与程序运行的系统环境有关 |
intp | 用于索引的整数,与C语言中ssize_t一致,int32或int64 |
int8 | 字节长度的整数,取值:[-128,127] |
int16 | 16位长度的整数,取值:[-32768,32767] |
int32 | 32位长度的整数,取值:[-231,231-1] |
int64 | 64位长度的整数,取值:[-263,263-1] |
uint8 | 8位无符号整数,取值:[0,255] |
uint16 | 16位无符号整数,取值:[0,65535] |
uint32 | 32位无符号整数,取值:[0,232-1] |
unit64 | 64位无符号整数,取值:[0,264-1] |
float16 | 16位半精度浮点数:1位符号位,5位指数,10位尾数 |
float32 | 32位半精度浮点数:1位符号位,8位指数,23位尾数 |
float64 | 64位半精度浮点数:1位符号位,11位指数,52位尾数 |
complex64 | 复数类型,实部和虚部都是32位浮点数 |
complex128 | 复数类型,实部和虚部都是64位浮点数 |
ndarray为什么这么多种元素类型?
对比:Python语法仅支持整数、浮点数和复数3种类型
- 科学计算涉及数据较多,对存储和性能都有较高要求。
- 对元素类型精细定义,有助于NumPy合理使用存储空间并优化性能
- 对元素类型精细定义,有助于程序员对程序规模有合理评估
ndarray数组可以由非同质对象构成,下图为非同质ndarray元素为对象类型。
非同质ndarrray对象无法有效发挥NumPy优势,尽量避免使用。
ndarray数组的创建方法
- 从Python中的列表、元组等类型创建ndarray数组。
- 使用NumPy中函数创建ndarray数组,如:arange,ones,zeros等。
- 从字节流(raw bytes)中创建ndarray数组。
- 从文件中读取特定格式,创建ndarray数组。
(1)从Python中的列表、元组等类型创建ndarray数组
x = np.array(list/tuple)
x = np.array(list/tuple, dtype=np.float32)
当np.array()不指定dtype时,NumPy将根据数据情况关联一个dtype类型。
(2)使用NumPy中函数创建ndarray数组,如:arange,ones,zeros等
函数 | 说明 |
---|---|
np.arange(n) | 类似range()函数,返回ndarray类型,元素从0到n-1 |
np.ones(shape) | 根据shape生成一个全1数组,shape是元组类型 |
np.zeros(shape) | 根据shape生成一个全0数组,shape是元组类型 |
np.full(shape,val) | 根据shape生成一个数组,每个元素值都是val |
np.eye(n) | 创建一个正方的n*n单位矩阵,对角线为1,其余为0 |
np.ones_like(a) | 根据数组a的形状生成一个全1数组 |
np.zeros_like(a) | 根据数组a的形状生成一个全0数组 |
np.full_like(a,val) | 根据数组a的形状生成一个数组,每个元素值都是val |
![在这里插入图片描述](
函数 | 说明 |
---|---|
np.linspace() | 根据起止数据等间距地填充数据,形成数组 |
np.concatenate() | 将两个或多个数组合并成一个新的数组 |
详细说明:np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
start — 区间起始值。强制参数。
stop — 区间终止值(是否取得到,需要设定参数endpoint)。强制参数。
num — 等分的个数。默认值为50。可选参数。
endpoint — 若为True(默认),则可以取到区间终止值;否则取不到。可选参数。
retstep — 若为True,则返回由生成的数组和步长构成的元组;若为False(默认),则只返回生成的数组。可选参数。
dtype — 数据类型。若不指定数据类型,则通过其他参数判断。可选参数。
ndarray数组的维度变换
方法 | 说明 |
---|---|
.reshape(shape) | 不改变数组元素,返回一个shape形状的数组,原数组不变 |
.resize(shape) | 与.shape()功能一致,但修改原数组 |
.swapaxes(ax1,ax2) | 将数组n个维度中两个维度进行调换 |
.flatten() | 对数组进行降维,返回折叠后的一维数组,原数组不变 |
.astype(new_type) | 返回一个将元素类型改变为new_type后的数组,原数组不变 |
ndarray数组向列表的转换
ls = a.tolist()。如下,a是一个(2,3,4)维度的数组,a.tolist()变成对应的列表,不同仅在于列表是Python中最原始的类型,很可能运行速度更慢。
数组的索引和切片
- 索引:获取数组中特定位置元素的过程
- 切片:获取数组元素子集的过程
一维数组的索引和切片示例:
多维数组的索引和切片示例:(注意是用逗号分隔)
数组与标量之间的运算
数组与标量之间的运算作用于数组的每一个元素
Numpy一元函数:对ndarray中的数据执行元素级运算的函数
函数 | 说明 |
---|---|
np.abs(x) np.fabs(x) | 计算数组各元素的绝对值 |
np.sqrt(x) | 计算数组个元素的平方根 |
np.square(x) | 计算数组各元素的平方 |
np.log(x) np.log10(x) np.log2(x) | 计算数组各元素的自然对数、10底对数和2底对数 |
np.ceil(x) np.floor(x) | 计算数组各元素的ceiling值或floor值 |
Numpy二元函数
函数 | 说明 |
---|---|
+ - * / ** | 两个数组各元素进行对应运算 |
np.maximum(x,y) np.fmax() np.minimum(x,y) np.fmin() | 元素级的最大值/最小值计算 |
np.mod(x,y) | 元素级的模运算 |
np.copysign(x,y) | 将数组y中各元素值的符号赋值给元素x对应元素 |
> < >= <= == != | 算术比较,产生布尔类型数组 |