- 博客(177)
- 收藏
- 关注
原创 Py2neo 教程
可以使用 Py2neo 的Node和类来定义图形对象模型。# 创建 Person 节点和 KNOWS 关系# 将节点和关系加入图数据库print("节点和关系已加入数据库!")提供了一种简化方式,将节点和关系封装为 Python 类。# 定义 Person 类模型# 创建 Person 实例并保存到数据库# 使用 Graph 的 push 方法将对象保存到数据库print("Person 对象已保存!")Py2neo。
2024-10-08 22:55:28 1057
原创 正则化教程
正则化可以有效防止模型过拟合,使模型具有更好的泛化能力。在实际项目中,L1 正则化适合特征选择,而 L2 正则化适合控制模型复杂度。结合 L1 和 L2 的 ElasticNet 则提供了更灵活的选择。如果你有特定的项目或者问题想要进一步探讨,可以告诉我,我可以帮助你更深入地学习和应用正则化。
2024-09-30 21:23:55 414
原创 itertools 教程
itertools模块为处理迭代器提供了一组高效的工具,适用于组合生成、序列操作和循环控制等各种应用。通过这些工具,你可以在处理大规模。
2024-09-29 23:50:07 953
原创 Datasketch 教程
LSH 的性能和准确性可以通过threshold(相似度阈值)、num_perm(哈希函数数量)等参数进行调节。合理设置这些参数,可以在查询速度和准确性之间取得平衡。
2024-09-29 21:15:54 703
原创 PyTorch VGG16手写数字识别教程
VGG16由多个卷积层和全连接层组成。我们将调整输入通道以适应单通道的MNIST数据。# 定义卷积层nn.Conv2d(1, 64, kernel_size=3, padding=1), # 将输入通道设置为1(灰度图)nn.ReLU(), # 激活函数nn.MaxPool2d(kernel_size=2, stride=2), # 最大池化层,减小特征图尺寸nn.ReLU(),nn.ReLU(),nn.ReLU(),nn.ReLU(),nn.ReLU(),nn.ReLU(),
2024-09-24 10:03:26 597
原创 BiRefNet 教程:基于 PyTorch 实现的双向精细化网络
Backbone(骨干网络):用于提取多尺度特征,支持多种主流的骨干网络(如 VGG16、ResNet)。Squeeze Module(压缩模块):用于压缩特征通道,简化网络计算。Decoder(解码器):逐层恢复图像分辨率,并生成分割结果。Refinement(精细化模块):对粗略的分割结果进行精细化处理,提升分割边界的准确性。Lateral Blocks(侧向块):用于跨层特征融合。模型的解码器(Decoder)模块负责将编码器提取的多尺度特征进行融合和上采样,逐步恢复原始分辨率。
2024-09-23 11:49:51 1180
原创 pytorch U²-Net教程
U²-Net 是基于 U-Net 结构的改进模型,由多个嵌套的 U 形编码器-解码器模块组成。其创新点在于U2 模块,它在不同尺度上提取特征,增强了对边界信息的捕捉能力。如果需要训练自己的 U²-Net 模型,可以基于损失函数进行训练。以下是一个自定义损失函数的示例。# 对不同尺度的预测进行加权损失计算U²-Net 是一个轻量级、功能强大的模型,专注于高质量的前景分割任务。多尺度特征捕捉:通过 U2 模块,U²-Net 能够捕捉到不同尺度的细节,适用于精细的边缘分割任务。易于使用。
2024-09-22 21:57:56 1064
原创 IS-Net 教程:基于 PyTorch 的图像分割网络
IS-Net 的具体网络结构定义在DIS项目的models/目录下。# 定义 IS-Net 的基础结构,类似于 UNet# 编码器部分(下采样)# 中间部分# 解码器部分(上采样)# 最后的分类层(输出二分类结果)# 编码器# 中间部分# 解码器# 创建 ISNet 模型实例。
2024-09-22 11:10:53 1295
原创 PyTorch 目标检测教程
目标检测任务不仅要识别图像中的物体类别,还要精确定位物体的边界框。在此任务中,每个模型输出一个物体类别标签和一个边界框。
2024-09-21 12:55:07 1011
原创 PyTorch 图像分割模型教程
图像分割的目标是将图像的每个像素进行分类。常见的应用场景有医学图像分割(如肿瘤检测)、自动驾驶(道路、车辆、行人分割)等。
2024-09-20 19:56:13 1551
原创 Scikit-learn 识别手写数字
本教程将使用 Scikit-learn 提供的手写数字数据集,分别使用支持向量机 (SVM)、随机森林和逻辑回归三种模型进行训练,并展示它们的预测结果和准确率。我们将使用该库自带的手写数字数据集 (我们首先加载数据集,并将每个图像展平为 64 维的特征向量(8x8 的像素值展平),然后将数据划分为训练集和测试集。为了直观展示模型的预测结果,我们定义一个函数来可视化部分手写数字图像,并显示实际标签和模型的预测标签。这三种模型的表现都比较优异,具体选择哪种模型取决于任务的复杂性、数据量和计算资源。
2024-09-20 13:06:20 589
原创 Scikit-learn (`sklearn`) 教程
除了使用提供的标准模型外,你还可以通过继承和自定义自己的估计器。# 创建并使用自定义分类器。
2024-09-19 10:43:27 2447
原创 torchvision 教程
是 PyTorch 中处理计算机视觉任务的重要工具,它为常用的数据集、模型、数据处理和增强提供了便利的接口。通过本教程,你可以学习如何使用加载数据集、应用图像预处理、使用预训练模型进行微调,并训练模型来解决实际的计算机视觉任务。
2024-09-18 21:47:51 1142
原创 PyTorch 教程
x = x.view(-1, 28 * 28) # 将输入平铺成一维x = F.relu(self.fc1(x)) # ReLU 激活函数return x# 创建网络实例print(net)通过本教程,我们了解了 PyTorch 的基础知识,包括张量操作、自动求导、神经网络的构建、训练和测试等内容。PyTorch 的灵活性和易用性使得它非常适合研究和实际项目。希望这个教程能帮助你快速上手 PyTorch,并应用于你的深度学习项目。
2024-09-18 21:32:09 1094
原创 FlagEmbedding
是一个功能强大且易于使用的嵌入生成工具,适合自然语言处理任务中的多种应用。通过本文的教程,你已经学会了如何使用生成文本嵌入、计算文本相似性、批量处理文本,并在文本分类等任务中使用它。根据任务的需求,选择合适的预训练模型和下游应用可以极大提高 NLP 任务的效果。
2024-09-13 10:37:51 1308
原创 Playwright 自动化验证码教程
在这个扩展的教程中,我们学习了如何使用Playwright来自动化处理坐标点击验证码。我们首先通过 Playwright 获取验证码图像的坐标和尺寸信息,然后根据识别结果计算需要点击的精确位置,最后通过模拟点击验证码图像中的特定坐标。
2024-09-11 22:57:22 1286
原创 DdddOCR
ddddocrddddocr支持用户根据自己的需求进行模型的微调和自定义训练,以提高特定场景下的识别准确率。我们介绍了ddddocr的基础功能和进阶应用,包括验证码识别、批量处理和图像预处理。ddddocr提供了一个非常简单易用的接口,特别适合处理验证码场景。如果你需要进行更高级的操作,比如自定义模型训练,可以深入研究官方文档并结合深度学习技术。
2024-09-08 21:47:56 1527
原创 OpenCV图像分割教程
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它为实时图像处理任务提供了数百种高效的工具和算法,并广泛应用于领域如图像处理、视频分析、机器学习、增强现实等。是 OpenCV 提供的主要阈值分割函数。src:输入图像(灰度图)。thresh:阈值。maxval:当像素值大于阈值时,分配给它的值。type:阈值类型(如二值化、反二值化等)。
2024-09-07 21:18:16 1445
原创 pyflink的窗口
窗口(Window)是 Flink 处理无界数据流的核心技术,它将无限的数据流划分为有限的块,这样可以对这些块进行聚合、计数等操作。滚动窗口(Tumbling Window):将数据流划分为不重叠的固定长度时间段。滑动窗口(Sliding Window):将数据流划分为固定长度的时间段,这些时间段可以相互重叠。会话窗口(Session Window):基于数据的活动时间来划分数据流,窗口之间有间隔(即活动的间歇)。计数窗口(Count Window):基于事件的数量而非时间划分窗口。
2024-09-06 18:02:49 1296
原创 PyFlink自定义函数
是最常见的自定义函数。它接受多个输入并返回一个标量值,类似于 SQL 中的普通函数。返回一个表,而不是单一值。它类似于 SQL 中的或UNNEST操作,允许将一行数据转换成多行输出。用于定义自定义的聚合逻辑,类似于 SQL 中的聚合函数(如SUMCOUNT等)。它接收多行输入并返回聚合结果。在 PyFlink 中,自定义函数(和)是扩展 Flink SQL 和 Table API 功能的重要工具。
2024-09-06 16:30:11 662
原创 极验4文字或图标点选,零样品学习坐标点返回
于是我突发奇想,可不可以不需要大批量验证码图片获取,不需要额外人工标注,不需要高成本的硬件设备,能不能做到。
2024-09-06 09:09:16 586
原创 OpenCV 模板匹配教程
模板匹配是 OpenCV 提供的强大功能,可以用于对象检测和图像分析。通过本文的教程,我们学习了如何使用 OpenCV 实现模板匹配、选择不同的匹配方法、检测多个对象以及使用金字塔技术进行多尺度匹配。根据不同的应用需求,可以调整匹配方法和参数以达到最佳效果。更多关于 OpenCV 模板匹配的详细信息和高级用法,请参考OpenCV 官方文档。
2024-09-02 16:43:03 1165
原创 pyflink中UDTF和UDF的区别
UDFUDF通常通过定义一个类并实现一个或多个方法(例如eval)来创建。输出结果通过return语句返回。UDTFUDTF也是通过定义一个类来创建,但需要实现eval方法。输出结果通过yield语句产生,而不是return。
2024-08-28 10:52:01 470
原创 Click库教程
Click 是一个功能强大且易于使用的库,适合开发复杂的命令行工具。通过使用 Click 的装饰器和上下文管理功能,你可以轻松地处理命令行参数、选项、子命令以及输入验证等。希望本教程能帮助你快速掌握 Click 的基本用法,并能运用它来构建自己的命令行工具。有关 Click 的更多高级功能和详细文档,请参考Click 官方文档。
2024-08-22 17:46:00 1002
原创 Docker Compose安装和部署Airflow
要在Docker中安装和部署Airflow,您可以按照以下步骤进行。Airflow是一个流行的工作流管理工具,使用Docker可以轻松设置和运行Airflow环境。
2024-08-20 10:43:26 470
原创 pyflink的row
pyflink是 Apache Flink 的 Python API,它提供了与 Java 和 Scala API 类似的流处理和批处理功能。Flink 是一个分布式流处理引擎,能够处理无界和有界数据流,支持事件时间处理、状态管理、窗口操作等功能。pyflinkTable API: 提供了类似 SQL 的编程模型,方便进行数据查询和转换。: 适用于复杂的流处理应用程序。Connectors: 用于与外部系统(如 Kafka, MySQL 等)集成。在pyflink中,Row。
2024-08-01 13:38:35 972
原创 Docker搭建Flink
如果你想要更方便地管理Flink集群,可以使用Docker Compose。确保你的系统已经安装了Docker。你可以直接使用官方的Flink Docker镜像,或者自己构建一个。
2024-07-27 15:04:45 517
原创 PyMilvus 教程
通过本教程,我们详细解析了 PyMilvus 的基本操作和高级功能,展示了如何使用 PyMilvus 连接 Milvus 服务器,创建集合,插入数据,执行向量搜索,创建索引,删除数据和集合。PyMilvus 提供了强大的功能来管理和查询向量数据,希望这篇教程对你有所帮助。更多详细信息和示例请参考PyMilvus 官方文档。
2024-07-15 17:39:52 2544
原创 Flask `before_request` 方法解析
通过本教程,我们详细解析了 Flask 框架中的方法,解释了如何使用setdefault方法确保全局函数列表的存在,并将函数添加到该列表中。理解这些内容有助于更好地掌握请求处理流程,并实现自定义的请求预处理逻辑。希望这篇教程对你有所帮助。更多详细信息和示例请参考Flask 官方文档。
2024-07-15 00:10:01 1156
原创 Flask `preprocess_request` 方法教程
调用注册在应用和当前蓝图(如果有)的。调用注册在应用和蓝图中的。如果任何处理函数返回一个非 None 值,则请求处理停止,并将该值作为响应返回。方法为开发者提供了一种在请求处理流程早期阶段执行自定义逻辑的方式。这对于验证、修改请求数据或执行其他预处理任务非常有用。通过理解和使用方法,您可以更好地控制 Flask 应用的请求处理流程。希望这篇教程能帮助您更好地理解和使用 Flask 的方法。如果您有任何问题或需要进一步的帮助,请随时提问。
2024-07-14 23:30:17 411
原创 blinker库
通过本教程,我们详细解析了如何使用blinker库的信号机制来处理请求事件。我们展示了如何创建和注册信号,以及如何发送和处理信号。信号机制是一种强大的设计模式,可以帮助开发者实现松散耦合的事件处理,提高代码的可维护性和扩展性。希望这篇教程对你有所帮助。更多详细信息和示例请参考官方文档。
2024-07-14 19:18:00 434
原创 WSGI 服务器教程:`full_dispatch_request` 方法解析
通过本教程,我们详细解析了一个用于 WSGI 服务器的方法,解释了它如何处理请求的前后处理、异常捕获和错误处理,并生成适当的 HTTP 响应。理解这些内容有助于更好地掌握 WSGI 规范,并实现自定义的 WSGI 服务器。希望这篇教程对你有所帮助。更多详细信息和示例请参考官方文档。
2024-07-13 23:14:22 862
原创 WSGI 应用教程:`wsgi_app` 方法解析
通过本教程,我们详细解析了一个用于 WSGI 服务器的wsgi_app方法,解释了它如何处理请求上下文、调用中间件、处理异常,并生成适当的 HTTP 响应。理解这些内容有助于更好地掌握 WSGI 规范,并实现自定义的 WSGI 服务器。希望这篇教程对你有所帮助。更多详细信息和示例请参考官方文档。
2024-07-13 22:51:38 472
原创 traceback
通过本教程,我们详细解析了 Pythontraceback模块的基本和高级功能,展示了如何使用该模块捕获、格式化和处理异常堆栈跟踪信息。理解这些内容有助于更好地调试 Python 程序,并实现高效的错误处理和日志记录。希望这篇教程对你有所帮助。更多详细信息和示例请参考官方文档。
2024-07-13 14:49:03 896
原创 WSGI 服务器教程:`execute` 方法解析
通过本教程,我们详细解析了一个用于 WSGI 服务器的execute方法,解释了它如何执行 WSGI 应用程序,处理应用程序的响应数据,并确保资源被正确释放。理解这些内容有助于更好地掌握 WSGI 规范,并实现自定义的 WSGI 服务器。希望这篇教程对你有所帮助。更多详细信息和示例请参考官方文档。
2024-07-11 22:28:56 568
原创 WSGI 服务器教程:`start_response` 方法解析
通过本教程,我们详细解析了一个用于 WSGI 服务器的方法,解释了它如何处理 HTTP 响应的状态码和响应头,并返回一个用于写入响应数据的函数。理解这些内容有助于更好地掌握 WSGI 规范,并实现自定义的 WSGI 服务器。希望这篇教程对你有所帮助。更多详细信息和示例请参考官方文档。
2024-07-11 22:28:19 425
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人