Educational Codeforces Round 116 (Rated for Div. 2) E. Arena

原题链接:https://codeforces.com/contest/1606/problem/E

比较困难的DP题,dp[i][j]表示幸存者个数为i,受到过的伤害总和为j的合法方案数。
向着 nj = min(x, j + i - 1), 0 <= k <= i 转移 dp[k][nj] = dp[k][nj] + dp[i][j] * comb
comb = C(i, i - k) * 快速幂(nj - j, i - k),答案为dp[0][0~x]的和。

为什么边界值是dp[n][0] = 1,而不是 dp[n][0] = 快速幂(x, n)呢?我认为是因为,只有在转移的时候才会计算当前生命值的可能种数,所以如果开始就赋值为x^n,就有了一次重复计算。

#include <bits/stdc++.h>
using namespace std;

using ll = long long;

const ll MOD = 998244353;

int n, x;
ll invv[505], sum[505], cc[505][505], ssum[505], dp[505][505]; 

ll ksm(ll a, ll b) {
	ll res = 1;
	while (b) {
		if (b & 1) res = res * a % MOD;
		a = a * a % MOD;
		b >>= 1;
	}
	return res;
}

ll inv(ll x) {
	return ksm(x, MOD - 2);
}

ll C(int m, int n) { // m 取 n 
	ll res = 1;
	for (int i = 1; i <= n; i++) 
		res = res * invv[i] % MOD * (m - i + 1) % MOD;
	return res;
}

int main(void) {
//	freopen("in.txt", "r", stdin);
	for (int i = 1; i <= 500; i++) invv[i] = inv(i);
	for (int i = 1; i <= 500; i++) {
		cc[i][0] = 1;
		for (int j = 1; j <= i; j++)
			cc[i][j] = cc[i][j - 1] * (i - j + 1) % MOD * invv[j] % MOD;
	}
	scanf("%d%d", &n, &x);
	dp[n][0] = 1;
	// dp[i][j] 表示当前状态下受过的伤害为j,幸存者个数为i的方案数  
	for (int i = n; i >= 0; i--) { // i是当前幸存者数量 
		for (int j = 0; j < x; j++) {
			int nj = min(x, j + i - 1); // nj是已经受到的总
			ll pw = 1; // 因为 nj > j 所以 k 的遍历顺序是无所谓的 
			for (int k = i; k >= 0; k--) {	// k是下一轮幸存者数量
				dp[k][nj] = (dp[k][nj] + dp[i][j] * pw % MOD * cc[i][i - k] % MOD) % MOD;
				pw = pw * (nj - j) % MOD;
			}
		}
	}
	ll ans = 0;
	for (int j = 0; j <= x; j++)
		ans = (ans + dp[0][j]) % MOD;
	printf("%lld\n", ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JILIN.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值