原题链接:https://codeforces.com/contest/1606/problem/E
比较困难的DP题,dp[i][j]表示幸存者个数为i,受到过的伤害总和为j的合法方案数。
向着 nj = min(x, j + i - 1), 0 <= k <= i 转移 dp[k][nj] = dp[k][nj] + dp[i][j] * comb
comb = C(i, i - k) * 快速幂(nj - j, i - k),答案为dp[0][0~x]的和。
为什么边界值是dp[n][0] = 1,而不是 dp[n][0] = 快速幂(x, n)呢?我认为是因为,只有在转移的时候才会计算当前生命值的可能种数,所以如果开始就赋值为x^n,就有了一次重复计算。
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const ll MOD = 998244353;
int n, x;
ll invv[505], sum[505], cc[505][505], ssum[505], dp[505][505];
ll ksm(ll a, ll b) {
ll res = 1;
while (b) {
if (b & 1) res = res * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return res;
}
ll inv(ll x) {
return ksm(x, MOD - 2);
}
ll C(int m, int n) { // m 取 n
ll res = 1;
for (int i = 1; i <= n; i++)
res = res * invv[i] % MOD * (m - i + 1) % MOD;
return res;
}
int main(void) {
// freopen("in.txt", "r", stdin);
for (int i = 1; i <= 500; i++) invv[i] = inv(i);
for (int i = 1; i <= 500; i++) {
cc[i][0] = 1;
for (int j = 1; j <= i; j++)
cc[i][j] = cc[i][j - 1] * (i - j + 1) % MOD * invv[j] % MOD;
}
scanf("%d%d", &n, &x);
dp[n][0] = 1;
// dp[i][j] 表示当前状态下受过的伤害为j,幸存者个数为i的方案数
for (int i = n; i >= 0; i--) { // i是当前幸存者数量
for (int j = 0; j < x; j++) {
int nj = min(x, j + i - 1); // nj是已经受到的总
ll pw = 1; // 因为 nj > j 所以 k 的遍历顺序是无所谓的
for (int k = i; k >= 0; k--) { // k是下一轮幸存者数量
dp[k][nj] = (dp[k][nj] + dp[i][j] * pw % MOD * cc[i][i - k] % MOD) % MOD;
pw = pw * (nj - j) % MOD;
}
}
}
ll ans = 0;
for (int j = 0; j <= x; j++)
ans = (ans + dp[0][j]) % MOD;
printf("%lld\n", ans);
return 0;
}