【hdu 1028】 Ignatius and the Princess III

Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
 

Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 

Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 

Sample Input
  
  
4 10 20
 

Sample Output
  
  
5 42 627
 

这道题是求整数拆分的方案数,可以先用母函数预处理120以内所有数拆分的方案数,再直接输出,下面是程序:
#include<stdio.h>
#include<iostream>
#define ll unsigned long long
using namespace std;
const int N=125;
ll s[N],a[N];
void out(ll n){
	if(n>9){
		out(n/10);
	}
	putchar(n%10+'0');
}
int main(){
	int n,i,j,k;
	for(i=0;i<=N;++i){
		s[i]=1;
		a[i]=0;
	}
	for(i=2;i<=N;++i){
		for(j=0;j<=N;++j){
			for(k=0;j+k<=N;k+=i){
				a[j+k]+=s[j];
			}
		}
		for(j=0;j<=N;++j){
			s[j]=a[j];
			a[j]=0;
		}
	}
	while(~scanf("%d",&n)){
		out(s[n]);
		putchar('\n');
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值