【bzoj 3751】 解方程 【NOIP2014】

Description

 已知多项式方程:

a0+a1*x+a2*x^2+...+an*x^n=0

求这个方程在[1,m]内的整数解(n和m均为正整数)。

Input

第一行包含2个整数n、m,每两个整数之间用一个空格隔开。

接下来的n+1行每行包含一个整数,依次为a0,a1,a2,...,an。

Output

 第一行输出方程在[1,m]内的整数解的个数。

接下来每行一个整数,按照从小到大的顺序依次输出方程在[1,m]内的一个整数解。

Sample Input

2 10
2
-3
1

Sample Output

2
1
2

HINT

 

 对于100%的数据,0<n≤100,|ai|≤10^{10000},an≠0,m≤1000000。

这道题显然不可以用暴力解决(因为在计算过程中会用到高精乘,最优时间复杂度为O(nmL\log_{2}L)(L为a_{i}长度),显然会T),所以考虑一种玄妙的做法,对于\sum_{i=0}^{n}a_{i}*x^{i}=0,将两边同时取模,即\sum_{i=0}^{n}a_{i}*x^{i}\equiv 0(mod\ P),这个方程的解一定包含前一个方程的解,且有极大的可能两者的解相同,所以只需要求解后一个方程即可,但此时的时间复杂度为O(nm),仍然会T,所以我们考虑一个性质x\equiv x+kP(mod\ P)(k\in \mathbb{Z}),由于这个性质,我们只需要考虑0~P-1之间是否有解即可,但当P很大时,时间复杂度并没有得到优化,所以我们可以选择10000~50000之间的数,同时为了保证最后结果的正确性,可以在时间允许范围内选择多个质数作为P,最终时间复杂度为O(n\sum P_{i}),下面是程序:

#include<stdio.h>
#include<map>
#include<iostream>
using namespace std;
const int p[10]={30011,11261,14843,19997,10007,21893};
int t[1000005],a[105][10],ans[1000005],n,m;
void read(int *s){
	int i;
	bool f=0;
	char c=getchar();
	for(i=0;i<6;i++){
		s[i]=0;
	}
	while((c<'0'||c>'9')&&c!='-'){
		c=getchar();
	}
	if(c=='-'){
		f=1;
		c=getchar();
	}
	while(c>='0'&&c<='9'){
		for(i=0;i<6;i++){
			s[i]=(s[i]*10+c-'0')%p[i];
		}
		c=getchar();
	}
	if(f){
		for(i=0;i<6;i++){
			s[i]*=-1;
		}
	}
}
bool check(int x,int k){
	int i,s=a[n][k];
	for(i=n-1;i>=0;--i){
		s=(s*x+a[i][k])%p[k];
	}
	return !s;
}
int main(){
	int i,j,k;
	scanf("%d%d",&n,&m);
	for(i=0;i<=n;i++){
		read(a[i]);
	}
	for(i=0;i<6;i++){
		for(j=0;j<p[i];j++){
			if(check(j,i)){
				for(k=j;k<=m;k+=p[i]){
					t[k]++;
				}
			}
		}
	}
	for(i=1,k=0;i<=m;i++){
		if(t[i]==6){
			ans[++k]=i;
		}
	}
	printf("%d\n",k);
	for(i=1;i<=k;i++){
		printf("%d\n",ans[i]);
	}
	return 0;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所的就是点 $1$ 到点 $n$ 的最短路,并且我们已经出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值