【函数式接口使用✈️✈️】通过具体的例子实现函数结合策略模式的使用

目录

🍸前言

🍻一、核心函数式接口

1. Consumer

2.  Supplier

3.  Function,>

🍺二、场景模拟

         1.面向对象设计

2. 策略接口实现(以 Function 接口作为策略) 

🍹三、对比

🍷文末


🍸前言

        在 Java 8 中引入了Stream API 新特性,这使得函数式编程风格进一步得到巩固,其中伴随着Lambda 表达式和 Stream API 的广泛使用,另一种函数式接口风格亦可以简化代码提升可读性和拓展性,具体如下

🍻一、核心函数式接口

1. Consumer<T>

  • 定义了一个接受单一输入参数并且无返回值的操作。常用于数据处理流程中的消费型操作,如打印日志、更新数据库等。
  •         List<String> names = Arrays.asList("Alice", "Bob", "Charlie");
            names.forEach(e-> System.out.println("Welcome login : "+e));
            // 这里是使用的Consumer<String>,给一个参数执行相关操作
    
            // 或者定义一个自定义Consumer
            Consumer<String> logAction = name -> System.out.println("Logging action for: " + name);
            names.forEach(logAction);

2.  Supplier<T>

  • 定义了一个不接受任何参数但是会产生一个结果的方法引用。常用于提供数据来源或计算某个值。
  •         Supplier<Integer> randomIntSupplier = () -> ThreadLocalRandom.current().nextInt(1, 100);
            System.out.println(randomIntSupplier.get()); // 输出一个1到100之间的随机整数

3.  Function<T, R>

  • 定义了一个接受一个输入参数并产生一个输出结果的方法引用。常用于数据转换、映射或计算。
  •         List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
            List<Double> doubles = numbers.stream().map((Function<Integer, Double>)                                 
            Integer::doubleValue).collect(Collectors.toList());
            doubles.forEach(System.out::println);
    
            // 或者自定义Function
            Function<String, String> upperCaseTransformer = String::toUpperCase;
            String transformed = upperCaseTransformer.apply("hello"); // 输出 "HELLO"
            System.out.println(transformed);

🍺二、场景模拟

         1.面向对象设计

        比如常见的促销活动中,不同的促销策略计算出商品的最终价格是不一样的,采用传统的面向对象设计的话,需要为每一个促销活动创建独立的方法或者类了,并在购物车类中通过直接调用相应的方法计算,如下:

public class ShoppingCart {
    //购物车中的商品列表
    private List<Product> products;

    //普通不打折,统计所有商品的价格即可
    public double calculateTotalPriceWithNormalPrice() {
        double totalPrice = products.stream()
                                    .map(Product::getPrice)
                                    .reduce(0.0, Double::sum);
        return totalPrice;
    }


    //促销打九折,统计商品价格的九折
    public double calculateTotalPriceWithTenPercentDiscount() {
        double totalPrice = products.stream()
                                    .map(product -> product.getPrice() * 0.9)
                                    .reduce(0.0, Double::sum);
        return totalPrice;
    }

    
    //促销直减50 ,小于0 的按照0元计算
    public double calculateTotalPriceWithFiftyDollarsOff() {
        double totalPrice = products.stream()
                                    .map(product -> Math.max(product.getPrice() - 50.0, 0.0))
                                    .reduce(0.0, Double::sum);
        return totalPrice;
    }

    // 调用示例
    public void processCheckout(CheckoutType type) {
        switch (type) {
            case NORMAL_PRICE:
                double normalPrice = calculateTotalPriceWithNormalPrice();
                // 处理正常价格结算逻辑
                break;
            case TEN_PERCENT_DISCOUNT:
                double tenPercentDiscount = calculateTotalPriceWithTenPercentDiscount();
                // 处理九折结算逻辑
                break;
            case FIFTY_DOLLARS_OFF:
                double fiftyDollarsOff = calculateTotalPriceWithFiftyDollarsOff();
                // 处理直减50美元结算逻辑
                break;
        }
    }

    // 其他方法...
}

enum CheckoutType {
    NORMAL_PRICE,
    TEN_PERCENT_DISCOUNT,
    FIFTY_DOLLARS_OFF
}

        这种方式增加了代码的耦合度,并且如果需要新增或者修改促销策略,就需要修改ShoppingCart类

2. 策略接口实现(以 Function 接口作为策略) 

import java.util.function.Function;

public interface PromotionStrategy extends Function<Double, Double> {
    // 不需要额外的方法,因为Function本身就是一种策略(接受一个参数,返回一个结果),它接受原始价格并返回打折后的价格
}

        创建几个具体的策略实现

public class NormalPriceStrategy implements PromotionStrategy {
    @Override
    public Double apply(Double originalPrice) {
        return originalPrice; // 正常价格,不做打折处理
    }
}

public class TenPercentDiscountStrategy implements PromotionStrategy {
    @Override
    public Double apply(Double originalPrice) {
        return originalPrice * 0.9; // 打九折
    }
}

public class FiftyDollarsOffStrategy implements PromotionStrategy {
    @Override
    public Double apply(Double originalPrice) {
        return Math.max(originalPrice - 50.0, 0.0); // 直减50美元,价格不能低于0
    }
}

            之后,在购物车计算逻辑中,可以根据用户选择的促销策略动态计算商品的价格:

public class ShoppingCart {
    private List<Product> products;
    private PromotionStrategy promotionStrategy;

    public ShoppingCart(PromotionStrategy strategy) {
        this.promotionStrategy = strategy;
        // 初始化产品列表...
    }

    public double calculateTotalPrice() {
        double totalPrice = products.stream()
                                    .map(Product::getPrice)
                                    .map(promotionStrategy)
                                    .reduce(0.0, Double::sum);
        return totalPrice;
    }

    // 其他方法...
}

// 使用示例:
ShoppingCart cart = new ShoppingCart(new TenPercentDiscountStrategy());
// 添加商品到cart...
double finalPrice = cart.calculateTotalPrice(); // 根据策略计算总价

        这个例子就是使用 PromotionStrategy 扮演了策略角色,不同的折扣策略通过实现 Function<Double,Double> 接口来决定如何计算折扣价,在使用时,可以根据需要选择并注入不同的策略实现。

🍹三、对比

策略模式面向对象设计
优点
  • 开放封闭原则:策略模式鼓励对扩展开放,对修改封闭。当需要增加新的促销策略时,只需要增加一个新的策略类,不需要修改现有的购物车类或者其他已有代码。
  • 代码复用:每个策略类(如NormalPriceStrategyTenPercentDiscountStrategyFiftyDollarsOffStrategy)可以独立于购物车类使用,增强了代码的复用性。
  • 低耦合:购物车类与具体的促销策略解耦,使得系统更灵活,更容易维护。
  • 对于简单的场景,直接在购物车类中添加多个计算方法直观易懂,初学者更容易接受。
缺点
  • 策略种类增多时,可能会导致策略接口的家族变得庞大,若策略逻辑差异不大,可能会造成代码冗余。
  • 耦合度高:购物车类与具体的促销逻辑紧密耦合,当促销策略发生变化时,必须修改购物车类的代码。
  • 扩展困难:若促销策略种类增加,会导致购物车类的代码臃肿,且不利于代码维护。
  • 代码复用性差:对于每一种新的促销活动,都需要在购物车类中添加新的方法,无法直接复用现有逻辑。

        其实不难看出,在面对频繁变化的业务逻辑(如促销策略)时,策略模式的优势明显,它有助于代码的可维护性、扩展性和复用性。而在简单、固定的场景下,直接在购物车类中硬编码计算逻辑可能显得更为直接简单。然而,考虑到长期的软件迭代和维护成本,推荐采用策略模式来优化代码结构。

🍷文末

        文章到这里就结束了~

  • 29
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

在比萨斜塔吃披萨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值