强连通分量 Tarjan 算法 学习笔记

Part1. 强连通分量

强连通

我们知道,在无向图中,如果点 u u u 和点 v v v 直接或间接可以相互到达对方,就说点 u u u v v v 连通。

1
2
3
1
2

都可以说点 1 1 1 2 2 2 是连通的。

但是在有向图中,能说点 1 1 1 2 2 2 是连通的吗?

1
2

好像不太对,因为 1 1 1 可以到达 2 2 2,但是 2 2 2 不能到达 1 1 1

这种情况,就说点 1 1 1 2 2 2弱连通的。

再看这张图:

1
2
3

此时,点 1 1 1 2 2 2 可以互相到达,我们说点 1 1 1 2 2 2 强连通

强连通分量

无向图的连通分量就是图 G G G 的一个子图,里面所有的点都是连通的。

所以有向图的强连通分量就是图 G G G 的一个子图,里面所有的点都强连通

1
2
3
4

上图中, { 1 , 2 , 3 } \{1,2,3\} {1,2,3} 是一个强连通分量, { 4 } \{4\} {4} 也是一个强连通分量。

整个图都强连通的图叫强连通图

强连通分量的应用

有一些只能对 DAG 操作的算法,我们可以把所有强连通分量求出来,缩成点,此时的新图就是一个 DAG,就可以正常运行算法。

Part2. Tarjan 算法

Tarjan 算法是求强连通分量的算法,通过 1 1 1 遍 dfs,可以求出所有的强连通分量。

【算法详细说明先咕咕咕,后续更新。】

Part3. 代码实现【模板】

void tarjan(int x){
	dfn[x]=low[x]=++ind;
	s.push(x);ins[x]=true;
	for(int i=head[x];i;i=e[i].nxt){
		int v=e[i].to;
		if(!dfn[v]){
			tarjan(v);
			low[x]=min(low[x],low[v]);
		}
		else if(ins[v]){
			low[x]=min(low[x],dfn[v]);
		}
	}
	if(dfn[x]==low[x]){
		int v;
		ans++;
		do{
			v=s.top();
			ins[v]=false;
			s.pop();
			scc[ans].push_back(v);
		}while(v!=x);
	}
}

Part4. 练习

题单

推荐题单:【图论2-4】连通性问题

题目

推荐题目 1 1 1上白泽惠音

推荐题目 2 2 2[USACO06JAN]The Cow Prom S

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值