强连通分量 Tarjan 算法入门笔记

本文介绍了强连通分量的概念及其在有向图中的重要性,阐述了Tarjan算法的基本思想和实现过程,包括深度优先遍历中的边分类,并解释了low数组在判断强连通分量中的核心作用。Tarjan算法具有O(n+m)的时间复杂度,比其他算法更高效。
摘要由CSDN通过智能技术生成

强连通分量在图论问题中得到广泛的应用,往往可以将有向图缩点,得到一个 DAG,于是避免了原图中可能有环造成后效性,可以在上面进行动态规划求解。
显然强连通分量是只针对于有向图而言的。对于一个连通的无向图,它本身就是一个连通分量。

例如,对于该图:

不难看出,其中结点 1、2、3 和 4 任意两点间互相可达,于是可以在上面跑一遍求强连通分量的算法,进行缩点后得到:

为了学习好强连通分量,必须首先明确一些相关概念。可能会有些枯燥,但也是必要的。
如果在一个图中,选取一些结点和边,得到的新图中任意两个结点间互相可达,则称该新图为原图的一个连通子图。
强连通分量是有向图的极大连通子图。所谓“极大”,是指对于该连通分量,不存在原图中某个不在该连通分量的点,可以加入后依然使该连通分量强连通。
通俗地说,就是每一个强连通分量都已经不能再大了,无法往其中加点。对于缩点后得到的新图,不存在某两个结点相互可达。

求强连通分量的算法有好几种,这里我们介绍一下 Tarjan 算法。
该算法是以其发明者 Robert Tarjan 的姓名命名的,值得一提的是,这个人还提出了解决 LCA 的离线算法、LCT、并查集等,是计算界一位伟大的科学家。

求强连通分量的 Tarjan 算法是基于 dfs 实现的。因此有必要回顾一下,对于有向图,进行深度优先遍历时边的分类:
我们在做dfs的时候,当访问到一个节点时,会出现四种情况:

  1. 此节点未被访问过,则此次的访问关系边(发起点——>接受点)称为树边(tree edge);
  2. 此节点被访问过但此节点的子孙还没访问完,换句话说,此次的发起点的源头可以追溯到接收点,则此次访问关系边称为后向边(back edge);
  3. 此节点被访问过且此节点的子孙已经访问完,而且发起点是搜索初始边,则称为前向边(down edge);
  4. 此节点被访问过且此节点的子孙已经访问完,而且发起点不是搜索初始边,则称为横叉边(cross edge)。

在理解了这几个边的基础上,再来看 Tarjan 算法就会好理解很多。Tarjan 算法求强连通分量的核心是用到了两个数组 dfn[]low[] 进行标记,因此有时它也被称为 DFN-LOW 算法。(dfn 的全称应该为 depth first (traversal) number?)

我们知道,对于一个图的深度优先遍历是有一定顺序的,而且可以用堆栈保存遍历的过程。通过巧妙的处理,可以在回溯时判断栈顶到栈中的结点是否在同一个强连通分量中。定义 dfnu

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值